Struts 2 Design and Programming: A Tutorial

by Budi Kurniawan
Publisher: BrainySoftware
Pub Date: January 25, 2008

Print ISBN-10: 0-9803316-0-9
Print ISBN-13: 978-0-9803316-0-8

Pages: 576

Overview

Offering both theoretical explanations and real-world applications, this in-depth guide
covers the 2.0 version of Struts, revealing how to design, build, and improve Java-based
Web applications within the Struts development framework. Feature functionality is
explained in detail to help programmers choose the most appropriate feature to accomplish
their objectives, while other chapters are devoted to file uploading, paging, and object
caching.

Editorial Reviews

Product Description

Offering both theoretical explanations and real-world applications, this in-depth guide
covers the 2.0 version of Struts, revealing how to design, build, and improve Java-based
Web applications within the Struts development framework. Feature functionality is
explained in detail to help programmers choose the most appropriate feature to accomplish
their objectives, while other chapters are devoted to file uploading, paging, and object
caching.

Introduction

Welcome to Struts 2 Design and Programming: A Tutorial.

Servlet technology and JavaServer Pages (JSP) are the main technologies for developing
Java web applications. When introduced by Sun Microsystems in 1996, Servlet technology
was considered superior to the reigning Common Gateway Interface (CGl) because serviets
stay in memory after responding to the first requests. Subsequent requests for the same
servlet do not require re-instantiation of the servlet's class, thus enabling better response
time.

The problem with servlets is it is very cumbersome and error-prone to send HTML tags to
the browser because HTML output must be enclosed in Strings, like in the following code.

PrintWiter out = response.getWiter();
out.println("<htm ><head><title>Testing</title></head>");
out.println("<body styl e=\"background: #f f dddd\ ">");

This is hard to program. Even small changes in the presentation, such as a change to the
background color, will require the servlet to be recompiled.

Sun recoghnized this problem and came up with JSP, which allows Java code and HTML tags
to intertwine in easy to edit pages. Changes in HTML output require no recompilation.
Automatic compilation occurs the first time a page is called and after it is modified. A Java
code fragment in a JSP is called a scriptlet.

Even though mixing scriptlets and HTML seems practical at first thought, it is actually a bad
idea for the following reasons:

e Interweaving scriptlets and HTML results in hard to read and hard to maintain
applications.

e Writing code in JSPs diminishes the opportunity to reuse the code. Of course, you
can put all Java methods in a JSP and include this page from other JSPs that need to
use the methods. However, by doing so you're moving away from the object-
oriented paradigm. For one thing, you will lose the power of inheritance.

e It is harder to write Java code in a JSP than to do it in a Java class. Let's face it, your
IDE is designed to analyze Java code in Java classes, not in JSPs.

e It is easier to debug code if it is in a Java class.

e It is easier to test business logic that is encapsulated in a Java class.

e Java code in Java classes is easier to refactor.

In fact, separation of business logic (Java code) and presentation (HTML tags) is such an
important issue that the designers of JSP have tried to encourage this practice right from
the first version of JSP.

JSP 1.0 allowed JavaBeans to be used for encapsulating code, thereby supported code and
presentation separation. In JSP you use <jsp:useBean> and <jsp:setProperty> to create a
JavaBean and set its properties, respectively.

Unfortunately, JavaBeans are not the perfect solution. With JavaBeans, method names must
follow certain naming convention, resulting in occasionally clumsy names. On top of that,
there's no way you can pass arguments to methods without resorting to scriptlets.

To make code and HTML tags separation easier to accomplish, JSP 1.1 defines custom tag
libraries, which are more flexible than JavaBeans. The problem is, custom tags are hard to
write and JSP 1.1 custom tags have a very complex life cycle.

Later an effort was initiated to provide tags with specific common functionality. These tags
are compiled in a set of libraries named JavaServer Pages Standard Tag Libraries (JSTL).
There are tags for manipulating scoped objects, iterating over a collection, performing
conditional tests, parsing and formatting data, etc.

Despite JavaBeans, custom tags, and JSTL, many people are still using scriptlets in their
JSPs for the following reasons.

e Convenience. It is very convenient to put everything in JSPs. This is okay if your
application is a very simple application consisting of only one or two pages and will
never grow in complexity.

e Shortsightedness. Writing code and HTML in JSPs seems to be a more rapid way of
development. However, in the long run, there is a hefty price to pay for building your
application this way. Maintenance and code readability are two main problems.

e Lack of knowledge.

In a project involving programmers with different skill levels, it is difficult to make sure all
Java code goes to Java classes. To make scriptlet-free JSPs more achievable, JSP 2.0 added
a feature that allows software architects to disable scriptlets in JSPs, thus enforcing the
separation of code and HTML. In addition, JSP 2.0 provides a simpler custom tag life cycle
and allows tags to be built in tag files, if effect making writing custom tags easier.

Why Serviets Are Not Dead

The advent of JSP was first thought to be the end of the day for servlets. It turned out this
was not the case. JSP did not displace servlets. In fact, today real-world applications employ
both serviets and JSPs. To understand why servlets did not become obsolete after the
arrival of JSP, you need to understand two design models upon which you can build Java
web applications.

The first design model, simply called Model 1, was born right after the JSP was made
available. Servlets are not normally used in this model. Navigating from one JSP to another
is done by clicking a link on the page. The second design model is named Model 2. You will
learn shortly why Model 1 is not recommended and why Model 2 is the way to go.

The Problems with Model 1

The Model 1 design model is page-centric. Model 1 applications have a series of JSPs where
the user navigates from one page to another. This is the model you employ when you first
learn JSP because it is simple and easy. The main trouble with Model 1 applications is that
they are hard to maintain and inflexible. On top of that, this architecture does not promote

the division of labor between the page designer and the web developer because the
developer is involved in both page authoring and business logic coding.

To summarize, Model 1 is not recommended for these reasons:

e Navigation problem. If you change the name of a JSP that is referenced by other
pages, you must change the name in many locations.

e There is more temptation to use scriptlets in JSPs because JavaBeans are limited and
custom tags are hard to write. However, as explained above, mixing Java code and
HTML in JSPs is a bad thing.

e If you can discipline yourself to not write Java code in JSPs, you'll end up spending
more time developing your application because you have to write custom tags for
most of your business logic. It's faster to write Java code in Java classes.

Model 2

The second design model is simply called Model 2. This is the recommended architecture to
base your Java web applications on. Model 2 is another name for the Model-View-Controller
(MVC) design pattern. In Model 2, there are three main components in an application: the
model, the view, and the controller. This pattern is explained in detail in Chapter 1, "Model
2 Applications.”

Note
The term Model 2 was first used in the JavaServer Pages Specification version 0.92.

In Model 2, you have one entry point for all pages and usually a servlet or a filter acts as
the main controller and JSPs are used as presentation. Compared to Model 1 applications,
Model 2 applications enjoy the following benefits.

more rapid to build
easier to test
easier to maintain
easier to extend

Struts Overview

Now that you understand why Model 2 is the recommended design model for Java web
applications, the next question you'll ask is, "How do | increase productivity?"

This was also the question that came to servlet expert Craig R. McClanahan's mind before
he decided to develop the Struts framework. After some preliminary work that worked,
McClanahan donated his brainchild to the Apache Software Foundation in May 2000 and
Struts 1.0 was released in June 2001. It soon became, and still is, the most popular
framework for developing Java web applications. Its web site is http://struts.apache.org.

In the meantime, on the same planet, some people had been working on another Java open
source framework called WebWork. Similar to Struts 1, WebWork never neared the
popularity of its competitor but was architecturally superior to Struts 1. For example, in
Struts 1 translating request parameters to a Java object requires an "intermediary" object

called the form bean, whereas in WebWork no intermediary object is necessary. The
implication is clear, a developer is more productive when using WebWork because fewer
classes are needed. As another example, an object called interceptor can be plugged in
easily in WebWork to add more processing to the framework, something that is not that
easy to achieve in Struts 1.

Another important feature that WebWork has but Struts 1 lacks is testability. This has a
huge impact on productivity. Testing business logic is much easier in WebWork than in
Struts 1. This is so because with Struts 1 you generally need a web browser to test the
business logic to retrieve inputs from HTTP request parameters. WebWork does not have
this problem because business classes can be tested without a browser.

A superior product (WebWork) and a pop-star status (Struts 1) naturally pressured both
camps to merge. According to Don Brown in his blog
(www.oreillynet.com/onjava/blog/2006/10/my_history_of_struts_2.html), it all started at
JavaOne 2005 when some Struts developers and users discussed the future of Struts and
came up with a proposal for Struts Ti (for Titanium), a code name for Struts 2. Had the
Struts team proceeded with the original proposal, Struts 2 would have included coveted
features missing in version 1, including extensibility and AJAX. On WebWork developer
Jason Carreira's suggestion, however, the proposal was amended to include a merger with
WebWork. This made sense since WebWork had most of the features of the proposed Struts
Ti. Rather than reinventing the wheel, 'acquisition' of WebWork could save a lot of time.

As a result, internally Struts 2 is not an extension of Struts 1. Rather, it is a re-branding of
WebWork version 2.2. WebWork itself is based on XWork, an open source command-pattern
framework from Open Symphony (http://www.opensymphony.com/xwork). Therefore, don't
be alarmed if you encounter Java types that belong to package com.opensymphony.xwork2
throughout this book.

Note
In this book, Struts is used to refer to Struts 2, unless otherwise stated.

So, what does Struts offer? Struts is a framework for developing Model 2 applications. It
makes development more rapid because it solves many common problems in web
application development by providing these features:

page navigation management

user input validation

consistent layout

extensibility

internationalization and localization
support for AJAX

Because Struts is a Model 2 framework, when using Struts you should stick to the following
unwritten rules:

e No Java code in JSPs, all business logic should reside in Java classes called action
classes.

e Use the Expression Language (OGNL) to access model objects from JSPs.

e Little or no writing of custom tags (because they are relatively hard to code).

Upgrading to Struts 2

If you have programmed with Struts 1, this section provides a brief introduction of what to
expect in Struts 2. If you haven't, feel free to skip this section.

¢ Instead of a servlet controller like the ActionServlet class in Struts 1, Struts 2 uses
a filter to perform the same task.

e There are no action forms in Struts 2. In Struts 1, an HTML form maps to an
ActionForm instance. You can then access this action form from your action class
and use it to populate a data transfer object. In Struts 2, an HTML form maps
directly to a POJO. You don't need to create a data transfer object and, since there
are no action forms, maintenance is easier and you deal with fewer classes.

e Now, if you don't have action forms, how do you programmatically validate user
input in Struts 2? By writing the validation logic in the action class.

e Struts 1 comes with several tag libraries that provides custom tags to be used in
JSPs. The most prominent of these are the HTML tag library, the Bean tag library,
and the Logic tag library. JSTL and the Expression Language (EL) in Servlet 2.4 are
often used to replace the Bean and Logic tag libraries. Struts 2 comes with a tag
library that covers all. You don't need JSTL either, even though in some cases you
may still need the EL.

e In Struts 1 you used Struts configuration files, the main of which is called struts-
config.xml (by default) and located in the WEB-INF directory of the application. In
Struts 2 you use multiple configuration files too, however they must reside in or a
subdirectory of WEB-INF/classes.

e Java 5 and Servlet 2.4 are the prerequisites for Struts 2. Java 5 is needed because
annotations, added to Java 5, play an important role in Struts 2. Considering that
Java 6 has been released and Java 7 is on the way at the time of writing, you're
probably already using Java 5 or Java 6.

e Struts 1 action classes must extend org.apache.struts.action.Action. In Struts 2
any POJO can be an action class. However, for reasons that will be explained in
Chapter 3, "Actions and Results" it is convenient to extend the ActionSupport class
in Struts 2. On top of that, an action class can be used to service related actions.

e Instead of the JSP Expression Language and JSTL, you use OGNL to display object
models in JSPs.

o Tiles, which started life as a subcomponent of Struts 1, has graduated to an
independent Apache project. It is still available in Struts 2 as a plug-in.

Overview of the Chapters

This book is for those wanting to learn to develop Struts 2 applications. However, this book
does not stop short here. It takes the extra mile to teach how to design effective Struts
applications. As the title suggests, this book is designed as a tutorial, to be read from cover
to cover, written with clarity and readability in mind.

The following is the overview of the chapters.

Chapter 1, "Model 2 Applications" explains the Model 2 architecture and provides two
Model 2 applications, one using a servlet controller and one utilizing a filter dispatcher.

Chapter 2, "Starting with Struts" is a brief introduction to Struts. In this chapter you
learn the main components of Struts and how to configure Struts applications.

Struts solves many common problems in web development such as page navigation, input
validation, and so on. As a result, you can concentrate on the most important task in
development: writing business logic in action classes. Chapter 3, "Actions and Results
explains how to write effective action classes as well as related topics such as the default
result types, global exception mapping, wildcard mapping, and dynamic method invocation.

Chapter 4, "OGNL" discusses the expression language that can be used to access the
action and context objects. OGNL is a powerful language that is easy to use. In addition to
accessing objects, OGNL can also be used to create lists and maps.

Struts ships with a tag library that provides User Interface (Ul) tags and non-Ul tags

(generic tags). Chapter 5, "Form Tags" deals with form tags, the Ul tags for entering
form data. You will learn that the benefits of using these tags and how each tag can be
used.

Chapter 6, "Generic Tags" explains non-Ul tags. There are two types of non-Ul tags,
control tags and data tags.

HTTP is type-agnostic, which means values sent in HTTP requests are all strings. Struts
automatically converts these values when mapping form fields to non-String action

properties. Chapter 7/, "Type Conversion" explains how Struts does this and how to

write your own converters for more complex cases where built-in converters are not able to
help.

Chapter 8, "Input Vvalidation" discusses input validation in detail.

Chapter 9, "Message Handling" covers message handling, which is also one of the
most important tasks in application development. Today it is often a requirement that
applications be able to display internationalized and localized messages. Struts has been
designed with internationalization and localization from the outset.

Chapter 10, "Model Driven and Prepare Interceptors" discusses two important
interceptors for separating the action and the model. You'll find out that many actions will
need these interceptors.

Chapter 11, "The Persistence Layer" addresses the need of a persistence layer to
store objects. The persistence layer hides the complexity of accessing the database from its
clients, notably the Struts action objects. The persistence layer can be implemented as
entity beans, the Data Access Object (DAO) pattern, by using Hibernate, etc. This chapter
shows you in detail how to implement the DAO pattern. There are many variants of this
pattern and which one you should choose depends on the project specification.

Chapter 12, "File Upload" discusses an important topic that often does not get enough
attention in web programming books. Struts supports file upload by seamlessly
incorporating the Jakarta Commons FileUpload library. This chapter discusses how to
achieve this programming task in Struts.

Chapter 13, "File Download" deals with file download and demonstrates how you can
send binary streams to the browser.

In Chapter 14, "Security" you learn how to configure the deployment descriptor to
restrict access to some or all of the resources in your applications. What is meant by
"configuration" is that you need only modify your deployment descriptor file—no
programming is necessary. In addition, you learn how to use the roles attribute in the
action element in your Struts configuration file. Writing Java code to secure web
applications is also discussed.

Chapter 15, "Preventing Double Submits™ explains how to use Struts' built-in
features to prevent double submits, which could happen by accident or by the user's not
knowing what to do when it is taking a long time to process a form.

Debugging is easy with Struts. Chapter 16, "Debugging and Profiling" discusses how
you can capitalize on this feature.

Chapter 17, "Progress Meters" features the Execute and Wait interceptor, which can
emulate progress meters for long-running tasks.

Chapter 18, "Custom Interceptors" shows you how to write your own interceptors.

Struts supports various result types and you can even write new ones. Chapter 19,
"Custom Result Types" shows how you can achieve this.

Chapter 20, "Velocity" provides a brief tutorial on Velocity, a popular templating
language and how you can use it as an alternative to JSP.

Chapter 21, "FreeMarker" is a tutorial on FreeMarker, the default templating language
used in Struts.

Chapter 22, "XSLT* discusses the XSLT result type and how you can convert XML to
another XML, XHTML, or other formats.

Chapter 23, "Plug-ins" discusses how you can distribute Struts modules easily as plug-
ins.

Chapter 24, "The Tiles Plug-in" provides a brief introduction to Tiles 2, an open source
project for laying out web pages.

Chapter 25, "JFreeChart Plug-ins" discusses how you can easily create web charts
that are based on the popular JFreeChart project.

Chapter 26, "zero Configuration explains how to develop a Struts application that
does not need configuration and how the CodeBehind plug-in makes this feature even more
powerful.

AJAX is the essence of Web 2.0 and it is becoming more popular as time goes by. Chapter

27, "AJAX" shows Struts' support for AJAX and explains how to use AJAX custom tags to
build AJAX components.

Appendix A, "'Struts Configuration™ is a guide to writing Struts configuration files.

Appendix B, "The JSP Expression Language" introduces the language that may help
when OGNL and the Struts custom tags do not offer the best solution.

Appendix C, "Annotations" discusses the new feature in Java 5 that is used extensively
in Struts.

Prerequisites and Software Download

Struts 2 is based on Java 5, Servlet 2.4 and JSP 2.0. All examples in this book are based on
Servlet 2.5, the latest version of Servlet. (As of writing, Servlet 3.0 is being drafted.) You
need Tomcat 5.5 or later or other Java EE container that supports Servlet version 2.4 or
later.

The source code and binary distribution of Struts can be downloaded from here:

http://struts. apache. or g/ downl oads. ht m

There are different ZIP files available. The struts-VERSION-all.zip file, where VERSION is the
Struts version, includes all libraries, source code, and sample applications. Its size is about
86MB and you should download this if you have the bandwidth. If not, try struts-VERSION-
lib.zip (very compact at 4MB), which contains the necessary libraries only.

Once you download a ZIP, extract it. You'll find dozens of JARs in the lib directory. The
names of the JARs that are native to Struts 2 start with struts2. The name of each Struts
JAR contains version information. For instance, the core library is packaged in the struts2-
core-VERSION.jar file, where VERSION indicates the major and minor version nhumbers. For
Struts 2.1.0, the core library name is struts2-core-2.1.0.jar.

There are also dependencies that come from other projects. The commons JAR files are
from the Apache Jakarta Commons project. You must include these commons JARs. The
ognl- VERSION.jar contains the OGNL engine, an important dependency. The freemarker-
VERSION.jar contains the FreeMarker template engine. It is needed even if you use JSP as
your view technology because FreeMarker is the template language for Struts custom tags.
The xwork- VERSION.jar contains XWork, the framework Struts 2 depends on. Always
include this JAR.

The only JARs you can exclude are the plug-in files. Their names have this format:

st rut s2- xxx- pl ugi n- VERSI ON. j ar

Here, xxx is the plug-in name. For example, the Tiles plug-in is packaged in the struts2-
tiles-plugin-VERSION. jar file.

You do not need the Tiles JARs either unless you use Tiles in your application.
Sample Applications

The examples used in this book can be downloaded from this site.

http://jtute.com

The naming of these applications in each chapter follows this format:
appXxy
where XX is the two digit chapter number and y is a letter that represents the application

order in the chapter. Therefore, the second application in Chapter 1 is appO1lb.

Tomcat 6 was used to test all applications. All of them were run on the author's machine on
port 8080. Therefore, the URLs for all applications start with http://localhost:8080, followed
by the application name and the servlet path.

Chapter 1. Model 2 Applications

As explained in Introduction, Model 2 is the recommended architecture for all but the
simplest Java web applications. This chapter discusses Model 2 in minute detail and provides
two Model 2 sample applications. A sound understanding of this design model is crucial to
understanding Struts and building effective Struts applications.

Model 2 Overview

Model 2 is based on the Model-View-Controller (MVC) design pattern, the central concept
behind the Smalltalk-80 user interface. As the term "design pattern” had not been coined
yet at that time, it was called the MVC paradigm.

An application implementing the MVC pattern consists of three modules: model, view, and
controller. The view takes care of the display of the application. The model encapsulates the
application data and business logic. The controller receives user input and commands the
model and/or the view to change accordingly.

Note

The paper entitled Applications Programming in Smalltalk-80(TM): How to use
Model-View-Controller (MVC) by Steve Burbeck, Ph.D. talks about the MVC pattern. You

can find it at http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html.

In Model 2, you have a servlet or a filter acting as the controller of the MVC pattern. Struts
1 employs a servlet controller whereas Struts 2 uses a filter. Generally JavaServer Pages
(JSPs) are employed as the views of the application, even though other view technologies
are supported. As the models, you use POJOs (POJO is an acronym for Plain Old Java
Object). POJOs are ordinary objects, as opposed to Enterprise Java Beans or other special

objects. Figure 1.1 shows the diagram of a Model 2 application.

Figure 1.1. Model 2 architecture

¥ 'Web Container

-

Servlet/ Filter

Request

Database

{Comtroller)

Web
Browser

Response

b *
e mssssssssssess e

In a Model 2 application, every HTTP request must be directed to the controller. The
request's Uniform Request Identifier (URI) tells the controller what action to invoke. The
term "action" refers to an operation that the application is able to perform. The POJO

associated with an action is called an action object. In Struts 2, as you'll find out later, an
action class may be used to serve different actions. By contrast, Struts 1 dictates that you
create an action class for each individual action.

A seemingly trivial function may take more than one action. For instance, adding a product
would require two actions:

1. Display the "Add Product"” form to enter product information.
2. Save the data to the database.

As mentioned above, you use the URI to tell the controller which action to invoke. For
instance, to get the application to send the "Add Product” form, you would use the following
URL:

htt p: // domai n/ appNane/ Product _i nput. action

To get the application to save a product, the URI would be:

htt p: / / domai n/ appName/ Pr oduct _save. acti on

The controller examines every URI to decide what action to invoke. It also stores the action
object in a place that can be accessed from the view, so that server-side values can be
displayed on the browser. Finally, the controller uses a RequestDispatcher object to
forward the request to the view (JSP). In the JSP, you use custom tags to display the
content of the action object.

In the next two sections | present two simple Model 2 applications. The first one uses a
servlet as the controller and the second one employs a filter.

Model 2 with A Serviet Controller

This section presents a simple Model 2 application to give you a general idea of what a
Model 2 application looks like. In real life, Model 2 applications are far more complex than
this.

The application can be used to enter product information and is named appOla. The user
will fill in a form like the one in Figure 1.2 and submit it. The application will then send a
confirmation page to the user and display the details of the saved product. (See Figure

1.3)

Figure 1.2. The Product form

<3 Add Product Form - Microsoft Internet Explorer

File Edt View Favorites Tools Help “.'l',"
: Address e_'l kg localhost: G080 app0l a/Praduct _input. sction | Go

Add a product

Product Name: | |
Description: | |

Price: | |

[AddProduct |

@ Done \rj Local inkranet

Figure 1.3. The product details page

23 Save Product - Microsoft Internet Explorer Q@E|
File Edt View Favorites Tools Help :,r

: Address -EIhttp:;‘;‘ln:alhnst:&ﬁﬂwmma.l'Prnduct_sava.actm v | &1 Go

The product has been saved.

Details:

Product Mame: Sungsang DWVD Player
Description: An inexpensive DVD player with
advanced features

Price: £22.99

@- Done ‘:-J Local inkranet

The application is capable of performing these two actions:

1.

Display the "Add Product" form. This action sends the entry form in Figure 1.2 to the
browser. The URI to invoke this action must contain the string
Product_input.action.

Save the product and returns the confirmation page in Figure 1.3. The URI to invoke
this action must contain the string Product_save.action.

The application consists of the following components:

1.

2.
3.
4

A Product class that is the template for the action objects. An instance of this class
contains product information.

A ControllerServlet class, which is the controller of this Model 2 application.

Two JSPs (ProductForm.jsp and ProductDetails.jsp) as the views.

A CSS file that defines the styles of the views. This is a static resource.

The directory structure of this application is shown in Figure 1.4.

Figure 1.4. appOla directory structure

Iﬁ applla
[=]-[= 55
; B main.css
== jsp
-|=| ProductDetails, jsp
- |=| ProduckFarm.jsp
[=]-[= WEB-IMNF
[=]-[= rclasses
[=]-[= appOla
. fﬁu ControllerServlet.class
: @0 Product.class
=] webxml

Let's take a closer look at each component in appOla.
The Product Action Class

A Product instance is a POJO that encapsulates product information. The Product class

(shown in Listing 1.1) has three properties: productName, description, and price. It
also has one method, save.

Listing 1.1. The Product class

package appOla;
import java.io.Serializable;

public class Product inplenents Serializable {
private String product Nane;
private String description;
private String price;

public String getProductNanme() {
return product Nane;
}

public void setProduct Nanme(String product Nane) {
thi s. product Nane = product Nane;

}
public String getDescription() {
return description;

public void setDescription(String description) {
this.description = description;

}

public String getPrice() {
return price;

}

public void setPrice(String price) {
this.price = price;

}

public String save() {
/1l add here code to save the product to the database
return "success";

The ControllerServlet Class

The ControllerServlet class (presented in Listing 1.2) extends the
Javax.serviet.http.HttpServlet class. Both its doGet and doPost methods call the
process method, which is the brain of the servlet controller. I know it's a bit weird that the
class for a servlet controller should be called ControllerServlet, but I'm following the
convention that says all servlet classes should end with Servlet.

Listing 1.2. The ControllerServlet Class

package appOla;

i mport java.io.| OException;

i mport javax. servl et. Request Di spat cher;

i mport javax.servlet. Servl et Excepti on;

i mport javax.servlet.http.HtpServlet;

i mport javax.servlet.http. HttpServl et Request ;
i mport javax.servlet.http. HtpServl et Response;

public class ControllerServlet extends HtpServlet {
public void doGet (HttpServl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {
process(request, response);

}

public void doPost (HttpServl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {
process(request, response);

private void process(HttpServl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

String uri = request. get Request URI () ;

/*
*uri is in this form /contextNanme/resourceNane,
for exanple: /appOla/Product_input.action.
However, in the case of a default context, the
context nane is enpty, and uri has this form
/resourceNane, e.g.: /Product _input.action

/

nt lastlndex = uri.lastlndexOf("/");

String action = uri.substring(lastlndex + 1);

/'l execute an action

if (action.equal s("Product _input.action")) {

/1l there is nothing to be done

* Ok X X

} else if (action.equal s("Product_save.action")) {

/'l instantiate action class
Product product = new Product();
/'l popul ate action properties
product . set Product Nange(

request . get Par anet er (" product Nane")) ;
product . set Descri pti on(

request . get Paraneter ("description"));
product . set Pri ce(request. get Paraneter("price"));
/'l execute action nmethod
product . save();
/1 store action in a scope variable for the view
request.setAttribute("product", product);

}

I/ forward to a view
String dispatchUl = null;
if (action.equal s("Product _input.action")) {

di spatchUrl = "/jsp/Product Formjsp";

} else if (action.equal s("Product_save.action")) {
di spatchUrl = "/jsp/ProductDetails.jsp";

}

if (dispatchUl = null) {

Request Di spatcher rd =
request . get Request Di spat cher (di spatchUrl);
rd. forward(request, response);

The process method in the ControllerServlet class processes all incoming requests. It
starts by obtaining the request URI and the action name.

String uri = request. get Request URI () ;
int lastlndex = uri.lastlndexOr("/");
String action = uri.substring(lastlndex + 1);

The value of action in this application can be either Product_input.action or
Product_save.action.

Note

The .action extension in every URI is the default extension used in Struts 2 and is therefore
used here.

The process method then continues by performing these steps:

1. Instantiate the relevant action class, if any.

2. If an action object exists, populate the action's properties with request parameters.
There are three properties in the Product_save action: productName, description,
and price.

3. If an action object exists, call the action method. In this example, the save method
on the Product object is the action method for the Product_save action.

4. Forward the request to a view (JSP).

The part of the process method that determines what action to perform is in the following
if block:

/'l execute an action

i f (action.equal s("Product_input.action")) {
/1l there is nothing to be done

} else if (action.equal s("Product_save. action")) {
/1 instantiate action class

There is no action class to instantiate for the action Product_input. For Product_save,
the process method creates a Product object, populates its properties, and calls its save
method.

Product product = new Product();
/'l popul ate action properties
product . set Product Nange(

request . get Par anet er (" product Nane")) ;
product . set Descri ption(

request . get Paraneter ("description"));
product . set Price(request. get Paranmeter("price"));
/'l execute action nethod
product . save();
/] store action in a scope variable for the view
request.setAttribute("product”, product);

The Product object is then stored in the HttpServletRequest object so that the view can
access it.

The process method concludes by forwarding to a view. If action equals
Product_input.action, control is forwarded to the ProductForm.jsp page. If action is
Product_save.action, control is forwarded to the ProductDetails.jsp page.

I/ forward to a view
String dispatchUl = null
i f (action.equal s("Product_input.action")) {

di spatchUrl = "/jsp/Product Formjsp";

} else if (action.equal s("Product_save.action")) {
di spatchUrl = "/jsp/ProductDetails.jsp";

}

if (dispatchUl !'= null) {

Request Di spatcher rd =
request . get Request Di spat cher (di spatchUrl);
rd. forward(request, response);

The Views

The application utilizes two JSPs for the views of the application. The first JSP,
ProductForm.jsp, is displayed if the action is Product_input.action. The second page,
ProductDetails.jsp, is shown for Product_save.action. ProductForm.jsp is given in

Listing 1.3 and ProductDetails.jsp in Listing 1.4.

Listing 1.3. The ProductForm.jsp page

<htm >
<head>
<title>Add Product Fornx/title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<di v id="gl obal ">
<h3>Add a product </ h3>
<f orm net hod="post" acti on="Product_save. acti on">
<t abl e>
<tr>
<t d>Pr oduct Name: </td>
<td><i nput type="text" nane="product Nane"/></td>
</[tr>
<tr>
<td>Description:</td>
<td><i nput type="text" name="description"/></td>
</[tr>
<tr>
<td>Price:</td>
<td><i nput type="text" name="price"/></td>
</[tr>
<tr>
<td><i nput type="reset"/></td>
<td><i nput type="submit" val ue="Add Product"/></td>
</[tr>
</t abl e>
</forme
</ di v>
</ body>
</htm >

Listing 1.4. The displaySavedProduct.jsp page

90

<htm >
<head>
<title>Save Product</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<di v id="gl obal ">
<h4>The product has been saved. </ h4>
<p>
<h5>Det ai | s: </ h5>
Product Nane: ${product. product Nane}

Description: ${product.description}

Price: $${product.price}
</ p>
</ di v>
</ body>
</htm >

The ProductForm.jsp page contains an HTML form for entering a product's details. The
ProductDetails.jsp page uses the JSP Expression Language (EL) to access the product
scoped object in the HttpServletRequest object. Struts 2 does not depend on the EL to
access action objects. Therefore, you can still follow the examples in this book even if you
do not understand the EL.

The Deployment Descriptor

A servlet/JSP application, appOla needs a deployment descriptor (web.xml file). The one
for this application is shown in Listing 1.5.

Listing 1.5. The deployment descriptor (web.xml) for appOla

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<web-app xm ns="http://java. sun.conf xm / ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schemna- i nst ance"
xsi:schenmaLocati on="http://java. sun.conf xm / ns/javaee

http://java. sun.conf xm / ns/javaee/ web-app_2_5. xsd"
version="2.5">

<servl et >
<servl et -nane>Control | er</servl et - nane>
<servl et-cl ass>app0la. Control | er Servl et </ servl et-cl ass>
</servlet>
<servl et - mappi ng>
<servl et -nane>Control | er</servl et - nane>
<url-pattern>*. action</url-pattern>
</ servl et - mappi ng>

<I-- Restrict direct access to JSPs.
For the security constraint to work, the auth-constraint

and | ogin-config el enents nust be present -->
<security-constraint>
<web-resource-col | ecti on>
<web- r esour ce- name>JSPs</ web- r esour ce- nane>
<url-pattern>/jsp/*</url-pattern>
</ web-resource-col | ecti on>
<aut h-constraint/>
</ security-constraint>

<l ogi n-confi g>
<aut h- met hod>BASI C</ aut h- net hod>
</l ogi n-confi g>
</ web- app>

The deployment descriptor defines the appOla.ControllerServlet servlet and names it
Controller. The servlet can be invoked by any URL pattern that ends with *.action.
Requests for static resources, such as images and CSS files, bypass the controller and are
handled directly by the container.

In this application, as is the case for most Model 2 applications, you need to prevent the
JSPs from being accessed directly from the browser. There are a number of ways to achieve
this, including:

e Putting the JSPs under WEB-INF. Anything under WEB-INF or a subdirectory under
WEB-INF is protected. If you put your JSPs under WEB-INF you cannot access
them by using a browser, but the controller can still dispatch requests to those JSPs.
However, this is not a recommended approach since not all containers implement
this feature. BEA's WebLogic is an example that does not.

e Using a servlet filter and filter out requests for JSP pages.

e Using security restriction in your deployment descriptor. This is easier than using a
filter since you do not have to write a filter class. This method is chosen for this
application.

Using the Application

Assuming you are running the application on your local machine on port 8080, you can
invoke the application using the following URL:

http://1 ocal host: 8080/ app0la/ Product _i nput. acti on

You will see something similar to Figure 1.2 on your browser.

When you submit the form, the following URL will be sent to the server:

http://1 ocal host: 8080/ appOla/ Product save. acti on

Model 2 with A Filter Dispatcher

While a servlet is the most common controller in a Model 2 application, a filter can act as a
controller too. As a matter of fact, filters have life cycle methods similar to those of servlets.
These are life cycle methods of a filter.

e init. Called once by the web container just before the filter is put into service.

e doFilter. Called by the web container each time it receives a request with a URL that
matches the filter's URL pattern.

e destroy. Called by the web container before the filter is taken out of service, i.e.
when the application is shut down.

There is one distinct advantage of using a filter over a servlet as a controller. With a filter
you can conveniently choose to serve all the resources in your application, including static
ones. With a servlet, your controller only handles access to the dynamic part of the
application. Note that the url-pattern element in the web.xml file in the previous
application is

<servl et >
<servl| et - nanme>Control | er</ servl et - nane>
<servl et-class>...</servlet-class>

</ servl et>

<servl et - mappi ng>
<servl et - nanme>Control | er</servl et - nane>
<url-pattern>*.action</url-pattern>

</ servl et - mappi ng>

With such a setting, requests for static resources are not handled by the servlet controller,
but by the container. You wouldn't want to handle static resources in your servlet controller
because that would mean extra work.

A filter is different. A filter can opt to let through requests for static contents. To pass on a
request, call the filterChain.doFilter method in the filter's doFilter method. You'll learn
how to do this in the application to come.

Consequently, employing a filter as the controller allows you to block all requests to the
application, including request for static contents. You will then have the following setting in
your deployment descriptor:

<filter>

<filter-name>filterDi spatcher</filter-nane>
<filter-class> ..</filter-class>
</[filter>
<filter-mpping>
<filter-name>filterDi spatcher</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

What is the advantage of being able to block static requests? One thing for sure, you can
easily protect your static files from curious eyes. The following code will send an error
message if a user tries to view a JavaScript file:

public void doFilter(Servl et Request request, ServletResponse
response, FilterChain filterChain) throws | OException,
Servl et Exception {
Ht t pServl et Request req = (H tpServl et Request) request;
Ht t pSer vl et Response res = (HttpServl et Response) response;
String uri = req. get Request URI () ;

if (uri.indexOr("/css/") 1= -1
&& req. get Header ("referer") == null) {
res. sendError(H tpServl et Response. SC FORBI DDEN) ;
} else {

/'l handl e this request

}

It will not protect your code from the most determined people, but users can no longer type
in the URL of your static file to view it. By the same token, you can protect your images so
that no one can link to them at your expense.

On the other hand, using a servlet as the controller allows you to use the servlet as a
welcome page. This is an important feature since you can then configure your application so
that the servlet controller will be invoked simply by the user typing your domain name (such

as http://example.com) in the browser's address box. A filter does not have the
privilege to act as a welcome page. Simply typing the domain name won't invoke a filter
dispatcher. In this case, you will have to create a welcome page (that can be an HTML, a
JSP, or a servlet) that redirects to the default action.

The following example (appO1b) is a Model 2 application that uses a filter dispatcher.
The directory structure of app0O1b is shown in Figure 1.5.
Figure 1.5. appO1b directory structure

Tjj- appllib
—|-[= cs5
B main. css
== jsp
|=| ProductDetails. jsp
|=| ProductFarm.jsp
== WEB-INF
—I-[= classes
- app0ib
tuip FilterDispatcher. class
tuip Product.class
=] web.zml

The JSPs and the Product class are the same as the ones in appOla. However, instead of a
servlet as the controller, we have a filter called FilterDispatcher (given in Listing 1.6).

Listing 1.6. The FilterDispatcher class

package appOlb;

i mport java.io.| OException;

i mport javax.servlet.Filter;

i mport javax.servlet.FilterChain

i mport javax.servlet.FilterConfig;

i mport javax. servlet. Request D spatcher

i mport javax.servlet. Servl et Excepti on;

i mport javax.servlet. Servl et Request ;

i mport javax.servlet. Servl et Response;

i mport javax.servlet.http. HtpServl et Request;
i mport javax.servlet.http. HtpServl et Response;

public class FilterDispatcher inplenments Filter {
private FilterConfig filterConfig;

public void init(FilterConfig filterConfig) throws
Servl et Exception {
this.filterConfig = filterConfig;

}

public void destroy()
this.filterConfig

I

nul | ;

public void doFilter(Servl et Request request,
Servl et Response response, FilterChain filterChain)
throws | OException, ServletException {
Ht t pServl et Request req = (HttpServl et Request) request;
Ht t pSer vl et Response res = (HttpServl et Response) response;
String uri = req. get Request URI () ;
/*
*uri is in this form /contextNane/resourceNane
* for exanple /app0lb/Product input.action
* However, in the case of a default context,
* the context nanme is enpty, and uri has this form
* [resourceNane, e.g.: /Product_input.action
*/
if (uri.endsWth(".action")) {
/1 action processing
int lastlndex = uri.lastlndexCr("/");
String action = uri.substring(lastlndex + 1);
i f (action.equal s("Product_input.action")) {
/'l do not hing
} else if (action.equal s("Product _save.action")) {
/1 instantiate action class
Product product = new Product();
/1 popul ate action properties
product . set Product Nange(
request . get Par anet er (" product Nane")) ;
product . set Descri pti on(
request . get Paraneter ("description"));
product . set Pri ce(request. get Paraneter("price"));

/'l execute action nethod

product . save();

/]l store action in a scope variable for the view
request.setAttribute("product", product);

}

I/ forward to a view
String dispatchUl = null;
i f (action.equal s("Product_input.action")) {

di spatchUrl = "/jsp/Product Formjsp";

} else if (action.equal s("Product_save.action")) {
di spatchUrl = "/jsp/ProductDetails.jsp";

}

if (dispatchUl = null) {

Request Di spat cher rd = request
. get Request Di spat cher (di spatchUrl);
rd. forward(request, response);
}
} else if (uri.indexCOF("/css/") = -1
&& req. get Header ("referer") == null) {
res. sendError(H t pServl et Response. SC_FORBI DDEN) ;
} else {
/1l other static resources, let it through
filterChain.doFilter(request, response);

The doFilter method performs what the process method in appOla did, namely

1. Instantiate the relevant action class, if any.

2. If an action object exists, populate the action's properties with request parameters.

3. If an action object exists, call the action method. In this example, the save method
on the Product object is the action method for the Product_save action.

4. Forward the request to a view (JSP).

Note that since the filter captures all requests, including those for static requests, we can
easily add extra processing for CSS files. By checking the referer header for requests for
CSS files, a user will see an error message if he or she types in the URL to the CSS file:

http://1ocal host: 8080/ app0lb/ css/ mai n. css
The deployment descriptor is given in Listing 1.7.

Listing 1.7. The deployment descriptor for app0O1b

<?xm version="1.0" encoding="1 SO 8859-1"7?>

<web-app xm ns="http://java. sun.conf xm / ns/javaee"
xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://java. sun. com xm / ns/ | avaee

http://java. sun.conf xm / ns/javaee/ web-app_2_5. xsd"
version="2.5">

<filter>
<filter-name>filterDispatcher</filter-nane>
<filter-class>appOlb. FilterDi spatcher</filter-class>

</filter>

<filter-mppi ng>
<filter-name>filterDispatcher</filter-nane>
<url-pattern>/*</url-pattern>

</filter-mappi ng>

<l-- Restrict direct access to JSPs.
For the security constraint to work, the auth-constraint
and | ogin-config el enents nust be present -->
<security-constraint>
<web-r esource-col | ecti on>
<web- r esour ce- nane>JSPs</ web- r esour ce- nane>
<url-pattern>/jsp/*</url-pattern>
</ web-resource-col | ecti on>
<aut h-constraint/>
</ security-constraint>

<l ogi n-confi g>
<aut h- met hod>BASI C</ aut h- net hod>
</l ogi n-confi g>
</ web- app>

To test the application, direct your browser to this URL:

http://1ocal host: 8080/ app01b/ Product i nput.action

Summary

In this chapter you learned the Model 2 architecture and how to write Model 2 applications,

using either a servlet controller or a filter dispatcher. These two types of Model 2
applications were demonstrated in appOla and appOlb, respectively.

Practically the filter dispatcher in appO1b illustrates the main function of the Struts 2

framework. However, what you've seen does not cover even 0.1% of what Struts can do.

You'll write your first Struts application in the next chapter and learn more features in
subsequent chapters.

Chapter 2. Starting with Struts

In Chapter 1, "Model 2 Applications" you learned the advantages of the Model 2 architecture
and how to build Model 2 applications. This chapter introduces Struts as a framework for
rapid Model 2 application development. It starts with a discussion of the benefits of Struts
and how it expedites Model 2 application development. It also discusses the basic
components of Struts: the filter dispatcher, actions, results, and interceptors.

Introducing Struts configuration is another objective of this chapter. Most Struts application
will have a struts.xml file and a struts.properties file. The former is the more important as it
is where you configure your actions. The latter is optional as there exists a
default.properties file that contains standard settings that work for most applications.

Note

Appendix A, "Struts Configuration" explains Struts configuration in detail.

The Benefits of Struts

Struts is an MVC framework that employs a filter dispatcher as the controller. When writing
a Model 2 application, it is your responsibility to provide a controller as well as write action
classes. Your controller must be able to do these:

Determine from the URI what action to invoke.

Instantiate the action class.

If an action object exists, populate the action's properties with request parameters.
If an action object exists, call the action method.

Forward the request to a view (JSP).

arONE

The first benefit of using Struts is that you don't have to write a controller and can
concentrate on writing business logic in action classes. Here is the list of features that Struts
is equipped with to make development more rapid:

e Struts provides a filter dispatcher, saving you writing one.

e Struts employs an XML-based configuration file to match URIs with actions. Since
XML documents are text files, many changes can be made to the application without
recompilation.

e Struts instantiates the action class and populates action properties with user inputs.
If you don't specify an action class, a default action class will be instantiated.

e Struts validates user input and redirects user back to the input form if validation
failed. Input validation is optional and can be done programmatically or declaratively.
On top of that, Struts provides built-in validators for most of the tasks you may
encounter when building a web application.

e Struts invokes the action method and you can change the method for an action
through the configuration file.

e Struts examines the action result and executes the result. The most common result
type, Dispatcher, forwards control to a JSP. However, Struts comes with various
result types that allow you to do things differently, such as generate a PDF, redirect
to an external resource, send an error message, etc.

The list shows how Struts can help you with the tasks you did when developing the Model 2
applications in Chapter 1, "Model 2 Applications.” There is much more. Custom tags for
displaying data, data conversion, support for AJAX, support for internationalization and
localization, and extension through plug-ins are some of them.

How Struts Works

Struts has a filter dispatcher similar to that in appOZ1b. Its fully qualified name is
org.apache.struts2.dispatcher.FilterDispatcher. To use it, register it in the deployment
descriptor (web.xml file) using this filter and filter-mapping elements.

<filter>
<filter-name>struts2</filter-nanme>
<filter-class>
or g. apache. strut s2. di spat cher. Fil t er Di spat cher
</filter-class>
</[filter>
<filter-mpping>
<filter-nane>struts2</filter-nanme>
<url-pattern>/*</url-pattern>
</filter-mappi ng>

There's a lot that a filter dispatcher in a Model 2 application has to do and Struts' filter
dispatcher is by no means an exception. Since Struts has more, actually much more,
features to support, its filter dispatcher could grow infinitely in complexity. However, Struts
approaches this by splitting task processing in its filter dispatcher into subcomponents called
interceptors. The first interceptor you'll notice is the one that populates the action object
with request parameters. You'll learn more about interceptors in the section

"Interceptors" later in this chapter.

In a Struts application the action method is executed after the action's properties are
populated. An action method can have any name as long as it is a valid Java method name.

An action method returns a String value. This value indicates to Struts where control
should be forwarded to. A successful action method execution will forward to a different
view than a failed one. For instance, the String "success" indicates a successful action
method execution and "error" indicates that there's been an error during processing and an
error message should be displayed. Most of the time a RequestDispatcher will be used to
forward to a JSP, however JSPs are not the only allowed destination. A result that returns a
file for download does not need a JSP. Neither does a result that simply sends a redirection
command or sends a chart to be rendered. Even if an action needs to be forwarded to a
view, the view may not necessarily be a JSP. A Velocity template or a FreeMarker template

can also be used. Chapter 20, "Velocity" explains the Velocity templating language and
Chapter 20, "FreeMarker" discusses FreeMarker.

Now that you know all the basic components in Struts, I'll continue by explaining how Struts
works. Since Struts uses a filter dispatcher as its controller, all activities start from this
object.

The Case for Velocity and FreeMarker

JSP programmers would probably mumble, "Why introduce new view technologies
and not stick with JSP?" Good question. The answer is, while you can get away
with just JSP, there's a compelling reason to learn Velocity and/or FreeMarker.
Velocity and FreeMarker templates can be packaged in a JAR, which is how Struts

plug-ins are distributed (Plug-ins are discussed in Chapter 23, "Plug-ins"). You
cannot distribute JSPs in a JAR, at least not easily, although you'll find a way to do
so if you're determined enough. For example, check out this thread in Sun's
developer forum:

http://forumjava. sun. com t hread. | spa?t hreadl D=5132356

Therefore, it makes sense to invest in Velocity or FreeMarker. FreeMarker is more
advanced than Velocity, so if you can only afford to learn one new template
language, go with FreeMarker. In fact, WebWork developers switched from
Velocity to FreeMarker starting from WebWork version 2.2.

The first things that a filter dispatcher does is verify the request URI and determine what
action to invoke and which Java action class to instantiate. The filter dispatcher in appOl1b
did this by using a string manipulation method. However, this is impractical since during
development the URI may change several times and you will have to recompile the filter
each time the URI or something else changes.

For matching URIs with action classes, Struts uses a configuration file named struts.xml.
Basically, you need to create a struts.xml file and place it under WEB-INF/classes. You
define all actions in the application in this file. Each action has a name that directly
corresponds to the URI used to invoke the action. Each action declaration may specify the
fully qualified name of an action class, if any. You may also specify the action method name
unless its name is execute, the default method name Struts will assume in the absence of
an explicit one.

An action class must have at least one result to tell Struts what to do after it executes the
action method. There may be multiple results if the action method may return different
results depending on, say, user inputs.

The struts.xml file is read when Struts starts. In development mode, Struts checks the
timestamp of this file every time it processes a request and will reload it if it has changed
since the last time it was loaded. As a result, if you are in development mode and you
change the struts.xml file, you don't need to restart your web container. Saving you time.

Configuration file loading will fail if you don't comply with the rules that govern the
struts.xml file. If, or should | say when, this happens, Struts will fail to start and you must
restart your container. Sometimes it's hard to decipher what you've done wrong due to
unclear error messages. If this happens, try commenting out actions that you suspect are
causing it, until you isolate and fix the one that is impending development.

Note

I'll discuss Struts development mode when discussing the Struts configuration files in the
section "Configuration Files" later in this chapter.

Figure 2.1 shows how Struts processes action invocation. It does not include the reading
of the configuration file, that only happens once during application launch.

Figure 2.1. How Struts works

| Struts | | Config Manager | | Interceptor 1 | | Interceptor 2 | | Action | | Result |

For every action invocation the filter dispatcher does the following:

1. Consult the Configuration Manager to determine what action to invoke based on the
request URI:

2. Run each of the interceptors registered for this action. One of the interceptors will
populate the action's properties.

3. Execute the action method.

4. Execute the result.

Note that some interceptors run again after action method execution, before the result is
executed.

Interceptors

As mentioned earlier, there are a lot of things a filter dispatcher must do. Code that would
otherwise reside in the filter dispatcher class is modularized into interceptors. The beauty of
interceptors is they can be plugged in and out by editing the Struts' configuration file. Struts
achieves a high degree of modularity using this strategy. New code for action processing
can be added without recompiling the main framework.

Table 2.1 lists Struts default interceptors. The words in brackets in the Interceptor
column are names used to register the interceptors in the configuration file. Yes, as you will
see shortly, you need to register an interceptor in the configuration file before you can use
it. For example, the registered name for the Alias interceptor is alias.

Table 2.1. Struts default interceptors

Interceptor

Description

Alias (alias)

Converts similar parameters that may have different names
between requests.

Chaining (chain)

When used with the Chain result type, this interceptor
makes the previous action's properties available to the
current action. See Chapter 3, "Actions and Results" for
details.

Checkbox (checkbox)

Handles check boxes in a form so that unchecked check
boxes can be detected. For more information, see the
discussion of the checkbox tag in Chapter 5, "Form Tags."

Cookie (cookie)

Adds a cookie to the current action.

Conversion Error
(conversionError)

Adds conversion errors to the action's field errors. See
Chapter 7, "Type conversion" for more details.

Create Session
(createSession)

Creates an HttpSession object if one does not yet exist for

the current user.

Debugging (debugging)

Supports debugging. See Chapter 16, "Debugging and
Profiling."

Execute and Wait
(execAndWait)

Executes a long-processing action in the background and
sends the user to an intermediate waiting page. This
interceptor is explained in Chapter 17, "Progress Meters."

Exception (exception)

Maps exceptions to a result. See Chapter 3, "Actions and
Results" for details.

File Upload (fileUpload)

Supports file upload. See Chapter 12, "File Upload" for
details.

118n (i18n)

Supports internationalization and localization. See Chapter

Table 2.1. Struts default interceptors

Interceptor Description

9, "Message Handling."

Logger (logger) Outputs the action name.

Message Store (store) Stores and retrieves action messages or action errors or
field errors for action objects whose classes implement
ValidationAware.

Model Driven Supports for the model driven pattern for action classes that
(modelDriven) implement ModelDriven. See Chapter 10, "The Model
Driven Pattern" for details.

Scoped Model Driven Similar to the Model Driven interceptor but works for

(scopedModelDriven) classes that implement ScopedModelDriven.

Parameters (params) Populates the action's properties with the request
parameters.

Prepare (prepare) Supports action classes that implement the Preparable

interface. See Chapter 10, "The Model Driven Pattern"
for more details.

Scope (scope) Provides a mechanism for storing action state in the session
or application scope.

Servlet Config Provides access to the Maps representing
(servletConfig) HttpServletRequest and HttpServletResponse.
Static Parameters Maps static properties to action properties.

(staticParams)

Roles (roles) Supports role-based action. See Chapter 14, "Security"
for details.

Table 2.1. Struts default interceptors

Interceptor Description
Timer (timer) Outputs the time needed to execute an action.
Token (token) Verifies that a valid token is present. See Chapter 15,

"Preventing Double Submits" for details.

Token Session Verifies that a valid token is present. See Chapter 15,
(tokenSession) "Preventing Double Submits" for details.

Validation (validation) Supports input validation. See Chapter 8, "Input
Validation" for details.

Workflow (workflow) Calls the validate method in the action class.

Parameter Filter (n/a) Removes parameters from the list of those available to the
action.

Profiling (profiling) Supports action profiling. See Chapter 16, "Debugging

and Profiling" for details.

There are quite a number of interceptors, and this can be confusing to a beginner. The thing
is you don't have to know about interceptors intimately before you can write a Struts
application. Just know that interceptors play a vital role in Struts and we will revisit them
one at a time in subsequent chapters.

Most of the time the default interceptors are good enough. However, if you need non-
standard action processing, you can write your own interceptor. Writing custom interceptors

is discussed in Chapter 18, "Custom Interceptors."”

Struts Configuration Files

A Struts application uses a number of configuration files. The primary two are struts.xml
and struts.properties, but there can be other configuration files. For instance, a Struts
plug-in comes with a struts-plugin.xml configuration file. And if you're using Velocity as
your view technology, expect to have a velocity.properties file. This chapter briefly

explains the struts.xml and struts.properties files. Details can be found in Appendix
A\, "Struts Configuration."

Note

It is possible to have no configuration file at all. The zero configuration feature, discussed in

Chapter 26, "zero Configuration," is for advanced developers who want to skip this
mundane task.

In struts.xml you define all aspects of your application, including the actions, the
interceptors that need to be called for each action, and the possible results for each action.

Interceptors and result types used in an action must be registered before they can be used.
Happily, Struts configuration files support inheritance and default configuration files are
included in the struts2-core- VERSION.jar file. The struts-default.xml file, one of such
default configuration files, registers the default result types and interceptors. As such, you
can use the default result types and interceptors without registering them in your own
struts.xml file, making it cleaner and shorter.

The default.properties file, packaged in the same JAR, contains settings that apply to all
Struts applications. As a result, unless you need to override the default values, you don't
need to have a struts.properties file.

Let's now look at struts.xml and struts.properties in more detail.
The struts.xml File

The struts.xml file is an XML file with a struts root element. You define all the actions in
your Struts application in this file. Here is the skeleton of a struts.xml file.

<?xm version="1.0" encodi ng="UTF-8" ?>

<! DOCTYPE struts PUBLIC
"-// Apache Software Foundation//DTD Struts Configuration 2.0//EN'
"http://struts. apache. org/dtds/struts-2.0.dtd">

<struts>

</ struts>

The more important elements that can appear between <struts> and </struts> are
discussed next.

The package Element

Since Struts has been designed with modularity in mind, actions are grouped into packages.
Think packages as modules. A typical struts.xml file can have one or many packages:

<struts>
<package nane="package-1" nanespace="nanespace- 1"
extends="struts-default">
<action name="..."/>
<action nane="..."/>

</ package>
<package name="package-2" nanespace="nanespace-?2">
extends="struts-defaul t">
<action name="..."/>
<action name="..."/>

</ packag.e.>.

<package nane="package-n" nanespace="nanespace-n">
extends="struts-default">
<action nane="..."/>
<action nane="..."/>

</ package>
</struts>

A package element must have a name attribute. The namespace attribute is optional and
if it is not present, the default value "/" is assumed. If the namespace attribute has a non-
default value, the namespace must be added to the URI that invokes the actions in the
package. For example, the URI for invoking an action in a package with a default
namespace is this:

/ cont ext/ acti onNane. acti on

To invoke an action in a package with a non-default namespace, you need this URI:

/ cont ext / namespace/ act i onNane. acti on

A package element almost always extends the struts-default package defined in struts-
default.xml. By doing so, all actions in the package can use the result types and

interceptors registered in struts-default.xml. Appendix A\, "Struts Configuration" lists
all the result types and interceptors in struts-default. Here is the skeleton of the struts-
default package. The interceptors have been omitted to save space.

<?xm version="1.0" encodi ng="UTF-8" ?>

<! DOCTYPE struts PUBLIC
"-// Apache Software Foundation//DTD Struts Configuration 2.0//EN'
"http://struts. apache. org/dtds/struts-2.0.dtd">

<struts>
<package name="struts-default">
<resul t-types>

<resul t-type nane="chai n" cl ass="com opensynphony.
xwor k2. Acti onChai nResul t"/ >

<resul t-type nane="di spatcher"
cl ass="org. apache. strut s2. di spat cher. Servl et Di spat cher Resul t"

defaul t="true"/>

<resul t-type nane="freenarker"

cl ass="org. apache. strut s2. vi ews. freemar ker . Freemar ker Resul t "/ >
<resul t-type nane="httpheader"

cl ass="org. apache. strut s2. di spatcher. Ht t pHeader Resul t "/ >
<result-type nane="redirect"

cl ass="org. apache. struts2. di spatcher. Servl et Redi rect Resul t"/ >
<result-type nane="redirect-action"

cl ass="org. apache. strut s2. di spatcher. Servl et Acti onRedi rect Resul t"/ >
<resul t-type nane="streant

cl ass="org. apache. strut s2. di spatcher. StreanResul t"/ >
<resul t-type nanme="vel ocity"

cl ass="org. apache. strut s2. di spat cher. Vel ocityResult"/>
<result-type nane="xslt"

cl ass="org. apache. struts2. vi ews. xslt. XSLTResul t"/ >
<resul t-type nane="pl ai ntext"

cl ass="org. apache. struts2. di spatcher. Pl ai nText Resul t"/>

</result-types>

<i nt ercept ors>
[all interceptors]
</interceptors>

</ package>
</ struts>

The include Element

A large application may have many packages. In order to make the struts.xml file easier to
manage for a large application, it is advisable to divide it into smaller files and use include
elements to reference the files. Each file would ideally include a package or related
packages.

A struts.xml file with multiple include elements would look like this.

<?xm version="1.0" encodi ng="UTF-8" ?>

<I DOCTYPE struts PUBLIC
"-// Apache Software Foundation//DTD Struts Configuration 2.0//EN'
"http://struts.apache. org/dtds/struts-2.0.dtd">

<struts>

<include file="nodule-1.xm" />
<include file="nodule-2.xm" />

<| hcl ude file="nodul e-n.xm" />

</struts>

Each module.xml file would have the same DOCTYPE element and a struts root element.
Here is an example:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE struts PUBLIC
"-// Apache Software Foundation//DTD Struts Configuration 2.0//EN'
"http://struts.apache. org/dtds/struts-2.0.dtd">

<l-- file nodule-n.xm -->
<struts>
<package nane="test" extends="struts-default">
<action nane="Test1" class="test. Test1lAction">
<result>/jsp/Resultl.jsp</result>
</ action>
<action name="Test2" class="test. Test2Action">
<resul t>/aj ax/ Resul t 2. jsp</resul t>
</ action>
</ package>
</struts>

Note

Most sample applications in this book only have one struts.xml file. The only sample
application that splits the struts.xml file into smaller files can be found in Chapter 25,
“The JFreeChart Plug-in.-

The action Element

An action element is nested within a package element and represents an action. An action
must have a name and you may choose any name for it. A good name reflects what the
action does. For instance, an action that displays a form for entering a product's details may
be called displayAddProductForm. By convention, you are encouraged to use the
combination of a noun and a verb. For example, instead of calling an action
displayAddProductForm, name it Product_input. However, it is totally up to you.

An action may or may not specify an action class. Therefore, an action element may be as
simple as this.

<action name="M/Action">

An action that does not specify an action class will be given an instance of the default action

class. The ActionSupport class is the default action class and is discussed in Chapter 3,
"Actions and Results.”

If an action has a non-default action class, however, you must specify the fully class name
using the class attribute. In addition, you must also specify the name of the action method,
which is the method in the action class that will be executed when the action is invoked.
Here is an example.

<action nanme="Address_save" class="app. Address" net hod="save">

If the class attribute is present but the method attribute is not, execute is assumed for
the method name. In other words, the following action elements mean the same thing.

<action name="Enpl oyee_save" class="app. Enpl oyee" net hod="execute">

<action nanme="Enpl oyee_save" cl ass="app. Enpl oyee" >

The result Element

<result> is a subelement of <action> and tells Struts where you want the action to be
forwarded to. A result element corresponds to the return value of an action method.
Because an action method may return different values for different situations, an action
element may have several result elements, each of which corresponds to a possible return
value of the action method. This is to say, if a method may return "success" and "input,"
you must have two result elements. The name attribute of the result element maps a
result with a method return value.

Note

If a method returns a value without a matching result element, Struts will try to find a
matching result under the global-results element (See the discussion of this element
below). If no corresponding result element is found under global-results, an exception
will be thrown.

For example, the following action element contains two result elements.

<action nanme="Product save" class="app. Product" nethod="save">
<result name="success" type="di spatcher">
/jsp/ Confirmjsp
</result>
<result name="input" type="di spatcher">
/jsp/ Product.jsp
</result>
</ action>

The first result will be executed if the action method save returns "success," in which case
the Confirm.jsp page will be displayed. The second result will be executed if the method
returns "input,” in which case the Product.jsp page will be sent to the browser.

By the way, the type attribute of a result element specifies the result type. The value of
the type attribute must be a result type that is registered in the containing package or a
parent package extended by the containing package. Assuming that the action
Product_save is in a package that extends struts-default, it is safe to use a Dispatcher
result for this action because the Dispatcher result type is defined in struts-default.

If you omit the name attribute in a result element, "success" is implied. In addition, if the
type attribute is not present, the default result type Dispatcher is assumed. Therefore,
these two result elements are the same.

<result nanme="success" type="di spatcher">/jsp/ Confirmjsp</result>

<result>/jsp/Confirmjsp</result>

An alternative syntax that employs the param element exists for the Dispatcher result
element. In this case, the parameter name to be used with the param element is location.
In other words, this result element

<result>/test.jsp</result>

is the same as this:

<result>
<param nane="| ocati on">/test. | sp</ paranr
</result>

You'll learn more about the param element later in this section.
The global-results Element

A package element may contain a global-results element that contains results that act as
general results. If an action cannot find a matching result under its action declaration, it will
search the global-results element, if any.

Here is an example of the global-results element.

<gl obal -resul t s>
<result name="error">/jsp/ CGenericErrorPage.jsp</result>
<result name="login" type="redirect-action">Login</result>
</ gl obal -resul ts>

The Interceptor-related Elements

There are five interceptor-related elements that may appear in a struts.xml file:
interceptors, interceptor, interceptor-ref, interceptor-stack, and default-
interceptor-ref. They are explained in this section.

An action element must contain a list of interceptors that will process the action object.
Before you can use an interceptor, however, you have to register it using an interceptor
element under <interceptors>. Interceptors defined in a package can be used by all
actions in the package.

For example, the following package element registers two interceptors, validation and
logger.

<package nane="nmai n" extends="struts-default">
<i nterceptors>
<i nterceptor nane="validation" class="..."/>
<i nterceptor nane="logger" class="..."/>
</interceptors>
</ package>

To apply an interceptor to an action, use the interceptor-ref element under the action
element of that action. For instance, the following configuration registers four interceptors
and apply them to the Product_delete and Product save actions.

<package nane="nai n" extends="struts-default">
<i nterceptors>

<i nterceptor nane="alias" class="..."/>

<i nterceptor nane="i18n" class="..."/>

<i nterceptor nane="validation" class="..."/>
<i nterceptor nane="|ogger" class="..."/>

</interceptors>

<action nane="Product delete" class="...">
<interceptor-ref name="alias"/>
<interceptor-ref nane="i1l8n"/>
<interceptor-ref nane="validation"/>
<i nterceptor-ref nanme="|ogger"/>
<result>/jsp/main.jsp</result>

</ action>

<action nanme="Product_save" class="...">
<interceptor-ref nane="alias"/>
<interceptor-ref nanme="i1l8n"/>
<interceptor-ref nane="validation"/>
<interceptor-ref nane="|ogger"/>
<result name="input">/jsp/Product.jsp</result>
<resul t>/jsp/ProductDetails.jsp</result>

</ action>

</ package>

With these settings every time the Product_delete or Product_save actions are invoked,
the four interceptors will be given a chance to process the actions. Note that the order of
appearance of the interceptor-ref element is important as it determines the order of
invocation of registered interceptors for that action. In this example, the alias interceptor
will be invoked first, followed by the i18n interceptor, the validation interceptor, and the
logger interceptor.

With most Struts application having multiple action elements, repeating the list of
interceptors for each action can be a daunting task. In order to alleviate this problem,
Struts allows you to create interceptor stacks that group required interceptors. Instead of
referencing interceptors from within each action element, you can reference the interceptor
stack instead.

For instance, six interceptors are often used in the following orders: exception,
servletConfig, prepare, checkbox, params, and conversionError. Rather than

referencing them again and again in your action declarations, you can create an interceptor
stack like this:

<i nterceptor-stack nanme="basi cStack">
<interceptor-ref nanme="exception"/>

<i nterceptor-ref name="servlet-config"/>
<interceptor-ref name="prepare"/>

<i nterceptor-ref name="checkbox"/>

<i nterceptor-ref nane="parans"/>
<interceptor-ref name="conversionError"/>

</interceptor-stack>

To use these interceptors, you just need to reference the stack:

<action name="..." class="...">
<interceptor-ref nanme="basicStack"/>
<result name="input">/jsp/Product.sp</result>
<resul t>/jsp/ ProductDetails.jsp</result>

</ action>

The struts-default package defines several stacks. In addition, it defines a default-
interceptor-ref element that specifies the default interceptor or interceptor stack to use if
no interceptor is defined for an action:

<default-interceptor-ref nanme="defaultStack"/>

If an action needs a combination of other interceptors and the default stack, you must
redefine the default stack as the default-interceptor-ref element will be ignored if an
interceptor element can be found within an action element.

The param Element

The param element can be nested within another element such as action, result-type,
and interceptor to pass a value to the enclosing object.

The param element has a name attribute that specifies the name of the parameter. The
format is as follows:

<par am nane="property">val ue</ par anp

Used within an action element, param can be used to set an action property. For example,
the following param element sets the siteld property of the action.

<action nane="customer" class="...">
<param nanme="si tel d">cal i forni aOl</ paranp
</ action>

And the following param element sets the excludeMethod of the validation interceptor-
ref:

<interceptor-ref nane="validation">
<par am nane="excl udeMet hods" >i nput, back, cancel </ par an>
</interceptor-ref>

The excludeMethods parameter is used to exclude certain methods from invoking the
enclosing interceptor.

The constant Element

In addition to the struts.xml file, you can have a struts.properties file. You create the
latter if you need to override one or more key/value pairs defined in the
default.properties file, which is included in the struts2-core-VERSION.jar file. Most of
the time you won't need a struts.properties file as the default.properties file is good
enough. Besides, you can override a setting in the default.properties file using the
constant element in the struts.xml file.

The constant element has a nhame attribute and a value attribute. For example, the
struts.devMode setting determines whether or not the Struts application is in development
mode. By default, the value is false, meaning the application is not in development mode.

The following constant element sets struts.devMode to true.

<struts>
<constant nane="struts.devMbde" val ue="true"/>

</ struts>
The struts.properties File

You create a struts.properties file if you need to override settings in the
default.properties file. For example, the following struts.properties file overrides the
value of struts.devMode in default.properties.

struts. devibde = true

A struts.properties file must reside in the classpath or in WEB-INF/classes. Appendix

A\, "Struts Configuration" provides the complete list of key/value pairs that may appear in a
struts.properties file.

To avoid creating a new file, you can use constant elements in the struts.xml file.
Alternatively, you can use the init-param element in the filter declaration of the Struts
filter dispatcher:

<filter>
<filter-nane>struts</filter-nanme>
<filter-class>
org. apache. strut s2. di spatcher. Fil terDi spatcher
</filter-class>
<i nit-paranp
<par am nane>st rut s. devhMbde</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paranp
</[filter>

A Simple Struts Application

Let's now rewrite appOl1b using Struts and call the new application app0O2a. You will use
similar JSPs and an action class called Product.

The directory structure of app02a is given in Figure 2.2.
Figure 2.2. app02a directory structure

'Lf;'- appl2a
=l css
Eﬁ main, css
=l [= jsp
|=| Details.jsp
|=| Product.jsp
.- WEB-INF
-l classes
-l appl2a
J.,l__,“., Product.class
|=| struts.zml
+-[= lib

| wweb,zml

Each component of the application is discussed in the next sub-sections.

The Deployment Descriptor and the Struts Configuration File

The deployment descriptor is given in Listing 2.1 and the Struts configuration file in
Listing 2.2.

Listing 2.1. The deployment descriptor (web.xml file)

90

<?xm version="1.0" encodi ng="1 SO 8859-1"7?>

<web-app xm ns="http://java. sun.conf xm / ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://java. sun.coni xm / ns/javaee

http://java. sun.conf xm / ns/javaee/ web-app_2_5. xsd"
version="2.5">

<filter>

<filter-nanme>struts2</filter-nane>

<filter-

cl ass>org. apache. struts2. di spatcher. FilterDi spatcher</filter-
cl ass>

</[filter>
<filter-nmappi ng>

<filter-nanme>struts2</filter-nanme>

<url-pattern>/*</url-pattern>
</filter-mappi ng>
<l-- Restrict direct access to JSPs.

For the security constraint to work, the auth-constraint

and | ogin-config el ements nust be present -->
<security-constraint>

<web-resource-col | ecti on>

<web- r esour ce- nane>JSPs</ web- r esour ce- nane>
<url-pattern>/jsp/*</url-pattern>

</ web-resource-col | ecti on>

<aut h-constraint/>
</ security-constraint>

<l ogi n-confi g>
<aut h- net hod>BASI C</ aut h- net hod>
</l ogi n-confi g>
</ web- app>

Listing 2.2. The struts.xml

90

<?xm version="1.0" encodi ng="UTF-8" ?>

<I DOCTYPE struts PUBLIC
"-// Apache Software Foundation//DTD Struts Configuration 2.0//EN
"http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>
<package nane="app02a" nanmespace="/" extends="struts-defaul t">

<action nanme="Product i nput">
<resul t >/ sp/ Product Form j sp</resul t>
</ action>

<action nanme="Product _save" class="app02a. Product">
<resul t>/jsp/ ProductDetails.jsp</result>
</ action>
</ package>
</struts>

The struts.xml file defines a package (app02a) that has two actions, Product_input and
Product_save. The Product_input action does not have an action class. Invoking
Product_input simply forwards control to the ProductForm.jsp page. This page contains
an entry form for entering product information.

The Product_save action has a non-default action class (app0O2.Product). Since no

method attribute is present in the action declaration, the execute method in the Product
class will be invoked.

Note

During development you can add these two constant elements on top of your package
element.

<const ant name="struts. enabl e. Dynani cMet hodl nvocati on”
val ue="fal se" />
<constant nane="struts.devMde" val ue="true" />

The first constant disables dynamic method invocation, explained in Chapter 3, "Actions
and Results." The second constant element causes Struts to switch to development mode.

The Action Class

The Product class in Listing 2.3 is the action class for action Product_save. The class
has three properties (productName, description, and price) and one action method,
execute.

Listing 2.3. The Product action class

package app02a;

i mport java.io.Serializable;

public class Product inplenments Serializable {
private String product Nane;
private String description;
private String price;

public String getProduct Name() {
return product Nane;
}

public void setProductName(String product Nane) {

thi s. product Nane = product Naneg;

}
public String getDescription() {

return description;

public void setDescription(String description) {
this.description = description;

}

public String getPrice() {
return price;

}

public void setPrice(String price) {
this.price = price;

public String execute() {
return "success";
}

Running the Application

This application is a Struts replica of the applications in Chapter 1. To invoke the first
action, use the following URL (assuming Tomcat is used)

http://1ocal host: 8080/ app02a/ Product _i nput. acti on

You will see something like Figure 1.2 in your browser. Enter values in the fields and
submit the form. Your browser will display a confirmation message similar to Figure 1.3.

Congratulations. You've just seen Struts in action!

Dependency Injection

Before we continue, 1I'd like to introduce a popular design pattern that is used extensively in
Struts: dependency injection. Martin Fowler wrote an excellent article on this pattern. His
article can be found here:

http://martinfow er.confarticles/injection.htm

Before Fowler coined the term "dependency injection,”" the phrase "inversion of control" was
often used to mean the same thing. As Fowler notes in his article, the two are not exactly
the same. This book therefore uses "dependency injection.”

Overview

I'll explain dependency injection with an example.

If you have two components, A and B, and A depends on B, you can say A is dependent on
B or B is a dependency of A. Suppose A has a method, importantMethod, that uses B as
defined in the following code fragment:

public class A {
public void inportantMethod() ({
Bb=...1// get an instance of B
b. usef ul Met hod() ;

A must obtain an instance of B before it can use B. While it is as straightforward as using
the new keyword if B is a Java concrete class, it can be problematic if B is not and there
are various implementations of B. You will have to choose an implementation of B and by
doing so you reduce the reusability of A (you cannot use A with implementations of B that
you did not choose).

As a more concrete example, consider the following PersistenceManager class that can be
used to persist objects to a database.

public class PersistenceManager {
public void store(Object object) {
Dat aSour ce dataSource = ... // obtain DataSource

try {
Connection connection = dataSource. get Connection();

/1l store object in the database
} catch (SQ.Exception e) {

}

}

PersistenceManager depends on DataSource. It has to obtain a DataSource before it
can create a Connection object to insert data to the database. In a Java EE application,
obtaining a data source often involves performing a JNDI lookup using the following
boilerplate code:

Dat aSour ce dat aSource = nul | ;
try {
context = new Initial Context();
dat aSour ce = (Dat aSource)
cont ext. | ookup("java:/conp/env/jdbc/ myDat aSource");
} catch (Nami ngException e) {
}

Here is a problem. To perform a JNDI lookup you need a JNDI name. However, there's no
guarantee every application that uses PersistenceManager will provide the same JNDI
name. If you hard-code the JNDI like I did in the code above, PersistenceManager will
become less reusable.

Dependency injection dictates that dependency should be injected to the using component.
In the context of the PersistenceManager example here, a DataSource object should be
passed to the PersistenceManager instead of forcing PersistenceManager to create one.

One way to do it is by providing a constructor that accepts the dependency, in this case a
DataSource:

public class PersistenceManager {
private Dat aSource dat aSource;
publ i c Persi st enceManager (Dat aSour ce dat aSource) {
thi s. dat aSource = dat aSour ce;

}
public void store(Object object) {
Y E:onnecti on connection = dataSource. get Connection();
/1l store object in the database
} catch (SQ.Exception e) {
}
}

}

Now, anyone who wants to use PersistenceManager must "inject" an instance of
DataSource through the PersistenceManager class's constructor. PersistenceManager
has now become decoupled from the DataSource instance it is using, making
PersistenceManager more reusable. The user of PersistenceManager will likely be in a
better position to provide a DataSource than the author of PersistenceManager because
the user will be familiar with the environment PersistenceManager will be running on.

Forms of Dependency Injection

Injecting dependency through the constructor is not the only form of dependency injection.
Dependency can also be injected through a setter method. Back to the
PersistenceManager example, the class author may opt to provide this method:

public voi d set Dat aSour ce(Dat aSour ce dat aSource) ({

thi s. dat aSour ce = dat aSour ce;
}

In addition, as explained in Fowler's article, you can also use an interface for dependency
injection.

Struts uses setter methods for its dependency injection strategy. For example, the
framework sets action properties by injecting HTTP request parameters' values. As a result,
you can use an action's properties from within the action method, without having to worry
about populating the properties.

Note

Java 5 EE supports dependency injection at various levels. Feel free to visit this site:

http://java. sun. conf devel oper/technical Articl es/ J2EE/ i nj ecti on/

Summary

In this chapter you have learned what Struts offers to speed up Model 2 application
development. You have also learned how to configure Struts applications and written your
first Struts application.

Chapter 3. Actions and Results

As Struts ships with interceptors and other components that solve common problems in web
application development, you can focus on writing business logic in the action class. This
chapter discusses topics you need to know to write effective action classes, including the
ActionSupport convenience class and how to access resources. In addition, it explains
related subjects such as the standard result types, global exception mapping, wildcard
mapping, and dynamic method invocation.

Action Classes

Every operation that an application can perform is referred to as an action. Displaying a
Login form, for example, is an action. So is saving a product's details. Creating actions is
the most important task in Struts application development. Some actions are as simple as
forwarding to a JSP. Others perform logic that needs to be written in action classes.

An action class is an ordinary Java class. It may have properties and methods and must
comply with these rules.

e A property must have a get and a set methods. Action property names follow the
same rules as JavaBeans property names. A property can be of any type, not only
String. Data conversion from String to non-String happens automatically.

e An action class must have a no-argument constructor. If you don't have a
constructor in your action class, the Java compiler will create a no-argument
constructor for you. However, if you have a constructor that takes one or more
arguments, you must write a no-argument constructor. Or else, Struts will not be
able to instantiate the class.

e An action class must have at least one method that will be invoked when the action
is called.

e An action class may be associated with multiple actions. In this case, the action class
may provide a different method for each action. For example, a User action class
may have login and logout methods that are mapped to the User_login and
User_logout actions, respectively.

e Since Struts 2, unlike Struts 1, creates a new action instance for every HTTP request,
an action class does not have to be thread safe.

e Struts 2, unlike Struts 1, by default does not create an HttpSession object.
However, a JSP does. Therefore, if you want a completely session free action, add
this to the top of all your JSPs:

<%Ppage session="fal se" %

The Employee class in Listing 3.1 is an action class. It has four properties (firstName,
lastName, birthDate, and emails) and one method (register).

Listing 3.1. The Employee action class

package app03a;
import java.util.Collection;
i mport java.util.Date,;

public class Enpl oyee {
private String firstNane;
private String | ast Nane;
private Date birthDate;
private Collection emails;

public Date getBirthDate() {
return birthDate;
}

public void setBirthDate(Date birthbDate) ({
this.birthDate = birthDate;

}
public Collection getEmails() {
return email s;

public void setEmail s(Collection emails) {
this.emails = emuils;

}

public String getFirstNanme() {
return firstName;

}

public void setFirstNane(String firstNane) {
this.firstName = firstNane;

}
public String getlLastName() {
return | ast Nane;

}

public void setLastNane(String | ast Nane) {
this.lastNane = | ast Nane;

}

public String register() {

/1 do somet hing here
return "success";

As you can see in Listing 3.1, an action class does not have to extend a certain parent
class or implement an interface. Having said that, most of your action classes will
implement the com.opensymphony.xwork2.Action interface indirectly by extending a

convenience class named ActionSupport. I'll explain ActionSupport in the section "The
ActionSupport Class" later in this chapter.

If you implement Action, you will inherit the following static fields:

e SUCCESS. Indicates that the action execution was successful and the result view
should be shown to the user.

e NONE. Indicates that the action execution was successful but no result view should
be shown to the user.

¢ ERROR. Indicates that that action execution failed and an error view should be sent
to the user.

e INPUT. Indicates that input validation failed and the form that had been used to
take user input should be shown again.

e LOGIN. Indicates that the action could not execute because the user was not logged
in and the login view should be shown.

You need to know the values of these static fields as you will use the values when
configuring results. Here they are.

public static final String SUCCESS = "success";
public static final String NONE = "none";
public static final String ERROR = "error";
public static final String INPUT = "input”;
public static final String LOG@N = "l ogin";

Note

One thing to note about the Struts action is you don't have to worry about how the view will
access it. Unlike in the app0Ola and appOl1b applications where values had to be stored in
scoped attributes so that the view could access them, Struts automatically pushes actions
and other objects to the Value Stack, which is accessible to the view. The Value Stack is

explained in Chapter 4, "OGNL."

Accessing Resources

From an action class, you can access resources such as the ServletContext, HttpSession,
HttpServiletRequest, and HttpServietResponse objects either through the
ServletActionContext object or by implementing Aware interfaces. The latter is an
implementation of dependency injection and is the recommended way as it will make your
action classes easier to test.

This section discusses the techniques to access the resources.
The ServletActionContext Object

There are two classes that provide access to the aforementioned resources,
com.opensymphony.xwork?2.ActionContext and
org.apache.struts2.ServletActionContext. The latter wraps the former and is the easier
to use between the two. ServletActionContext provides the following static methods that
you will often use in your career as a Struts developer. Here are some of them.

public static javax.servlet.http. HttpServl et Request get Request ()

Returns the current HttpServletRequest.

public static javax.servlet.http. H tpServl et Response get Response()

Returns the current HttpServletResponse object.

public static javax.servlet. Servl et Context get Servl et Context ()

Returns the ServletContext object.

You can obtain the HttpSession object by calling one of the getSession methods on the
HttpServietRequest object. The HttpSession object will be created automatically if you
use the basicStack or defaultStack interceptor stack.

Note

You should not call the methods on the ServletActionContext from an action class's
constructor because at this stage the underlying ActionContext object has not been
passed to it. Calling ServietActionContext.getServietContext from an action's
constructor will return null.

As an example, Listing 3.2 shows an action method that retrieves the
HttpServietRequest and HttpSession objects through ServietActionContext.

Listing 3.2. Accessing resources through ServiletActionContext

public String execute() {
Ht t pSer vl et Request request = Servl et Acti onCont ext. get Request () ;
Ht t pSessi on session = request. get Session();

if (session.getAttribute("user”) == null) {
return LOG N,
} else {

/1 do sonething
return SUCCESS;

Aware Interfaces

Struts provides four interfaces that you can implement to get access to the
ServiletContext, HttpServletRequest, HttpServiletResponse, and HttpSession objects,
respectively: The interfaces are

org.apache.struts2.util.ServletContextAware
org.apache.struts2.interceptor.ServletRequestAware
org.apache.struts2.interceptor.ServletResponseAware
org.apache.struts2.interceptor.SessionAware

I discuss these interfaces in the following subsections and provide an example of an action
that implements these interfaces in the next section.

ServiletContextAware

You implement the ServietContextAware interface if you need access to the
ServletContext object from within your action class. The interface has one method,
setServletContext, whose signature is as follows.

voi d set Servl et Cont ext (j avax. servl et. Servl et Cont ext servl et Cont ext)

When an action is invoked, Struts will examine if the associated action class implements
ServietContextAware. If it does, Struts will call the action's setServiletContext method
and pass the ServietContext object prior to populating the action properties and executing
the action method. In your setServiletContext method you need to assign the
ServiletContext object to a class variable. Like this.

private ServletContext servl et Context;

public void setServl et Cont ext(Servl et Context servletContext) {
t his.servl et Context = servl et Cont ext;

}

You can then access the ServletContext object from any point in your action class through
the serviletContext variable.

ServiletRequestAware

This interface has a setServiletRequest method whose signature is as follows.

voi d set Servl et Request (j avax. servlet. http. H t pServl et Request
servl et Request)

Implementing ServletRequestAware allows you access to the HttpServiletRequest
object from within your action class. When an action is invoked, Struts checks to see if the
action class implements this interface and, if it does, calls its setServiletRequest method,
passing the current HttpServiletRequest object. Struts does this before it populates the
action properties and before it executes the action method.

In the implementation of the setServletRequest method, you need to assign the passed
HttpServietRequest object to a class variable:

private HttpServl et Request servl et Request;

public void set Servl et Request (Htt pServl et Request servl et Request) {
this.servl et Request = servl et Request;

}

Now you can access the HttpServiletRequest object via the servletRequest reference.
ServiletResponseAware

The setServietResponse method is the only method defined in ServietResponseAware.
Here is its signature.

voi d set Servl et Response(j avax. servl et. http. Htt pServl et Response
servl et Response)

Implement this interface if you need to access the HttpServiletResponse object from your
action class. When an action is invoked, Struts checks to see if the action class implements
ServiletResponseAware. If it does, Struts calls its setServiletResponse method passing

the current HttpServletResponse object. You need to assign the passed object to a class

variable. Here is an example of how to do it.

private HttpServl et Response servl et Response;
public void setServl et Response(Htt pServl et Response
servl et Response) {
this. servl et Response = servl et Response;

You can now access the HttpServletResponse object via the servletResponse variable.

SessionAware

If you need access to the HttpSession object from within your action class, implementing
the SessionAware interface is the way to go. The SessionAware interface is a little
different from its three other counterparts discussed earlier. Implementing SessionAware
does not give you the current HttpSession instance but a java.util.Map. This may be
confusing at first, but let's take a closer look at the SessionAware interface.

This interface only has one method, setSession, whose signature is this.

voi d set Session(java.util.Mp nap)

In an implementing setSession method you assign the Map to a class variable:

private Map session;

voi d set Sessi on(Map map) {
this.session = nmap;

}

Struts will call the setSession method of an implementing action class when the action is
invoked. Upon doing so, Struts will pass an instance of
org.apache.struts2.dispatcher.SessionMap, which extends java.util.AbstractMap,
which in turn implements java.util.Map.SessionMap is a wrapper for the current
HttpSession object and maintains a reference to the HttpSession object.

The reference to the HttpSession object inside SessionMap is protected, so you won't be
able to access it directly from your action class. However, SessionMap provides methods
that make accessing the HttpSession object directly no longer necessary. Here are the
public methods defined in the SessionMap class.

public void invalidate()

Invalidates the current HttpSession object. If the HttpSession object has not been
created, this method exits gracefully.

public void clear()

Removes all attributes in the HttpSession object. If the HttpSession object has not been
created, this method does not throw an exception.

public java.util.Set entrySet() {

Returns a Set of attributes from the HttpSession object. If the HttpSession object is null,
this method returns an empty set.

public java.lang. Obj ect get(java.lang. Cbject key)

Returns the session attribute associated with the specified key. It returns null if the
HttpSession object is null or if the key is not found.

public java.lang. Obj ect put(java.lang. Object key,
java. | ang. Qbj ect val ue)

Stores a session attribute in the HttpSession object and returns the attribute value. If the
HttpSession object is null, it will create a new HttpSession object.

public java.lang. Obj ect renove(java.l ang. Obj ect key)

Removes the specified session attribute and returns the attribute value. If the HttpSession
object is null, this method returns null.

For example, to invalidate the session object, call the invalidate method on the
SessionMap:

if (session instanceof org.apache. struts2.di spatcher. Sessi onMap) {
((Sessi onMap) session).invalidate();

SessionMap.invalidate is better than HttpSession.invalidate because the former does
not throw an exception if the underlying HttpSession object is null.

Note

Unfortunately, the SessionMap class does not provide access to the session identifier. In
the rare cases where you need the identifier, use the ServiletActionContext to obtain the
HttpSession object.

Note

For this interface to work, the Servlet Config interceptor must be enabled. Since this
interceptor is part of the default stack, by default it is already on.

Using Aware Interfaces to Access Resources

The app0O3a application shows how to use Aware interfaces to access resources. The
application defines three actions as shown in Listing 3.3.

Listing 3.3. Action Declarations in app0O3a

<package name="app03a" extends="struts-default">
<action nane="User input">
<resul t>
<param nane="| ocati on">/j sp/ Logi n. j sp</ par an>
</result>
</ action>
<action name="User_l ogin" class="app03a. User" nmethod="1ogi n">
<result nane="success">/jsp/ Menu. jsp</result>
<result nanme="input">/jsp/Login.jsp</result>
</ action>
<action nane="User | ogout" class="app03a. User" nethod="I| ogout">
<result nane="success">/]sp/Login.jsp</result>
</ action>
</ package>

The User_login and User_logout actions are based on the User action class in LiSting

3.4. This class has two properties (userName and password) and implements
ServietContextAware, ServletRequestAware, ServletResponseAware, and
SessionAware to provide access to resources. Note that to save space the get and set
methods for the properties are not shown.

Listing 3.4. The User class

package app03a;

i mport java.util.Map;

i mport javax.servlet. Servl et Cont ext;

i mport javax.servlet.http. HttpServl et Request;

i mport javax.servlet.http. HtpServl et Response;

i mport org.apache. struts2. di spat cher. Sessi onMap;

i mport org.apache. struts2.interceptor. Servl et Request Awnar e;
i mport org.apache.struts2.interceptor. Servl et ResponseAwar e;
i mport org.apache. struts2.interceptor. Sessi onAwar €;

i mport org.apache. struts2.util. Servl et Cont ext Anar €;

public class User inplenments SessionAware, ServletRequest Awnare,
Ser vl et ResponseAwar e, Servl et Cont ext Awar e {
private String user Nane;
private String password;
private Servl et Context servletContext;
private HttpServl et Request servl et Request;
private Htt pServl et Response servl et Response;
private Map sessi onMap;

/'l getters and setters not shown

public void set Servl et Request (

Ht t pSer vl et Request servl et Request) {
this.servl et Request = servl et Request;
}
public void setSession(Map nmap) {
this.sessionVap = map;
}

public void set Servl et Response(
Ht t pSer vl et Response servl et Response) {
this.servl et Response = servl et Response;
}
public void set Servl et Cont ext (Servl et Context servletContext) {
this.servl et Context = servl et Context;

}
public String login() {
String referrer = servl et Request. get Header ("referer");
if (referrer !'= null && userNane.length() > 0
&& password. |l ength() > 0) {
int onlineUserCount = O;
synchroni zed (servl et Context) {
try {
onl i neUser Count = (Integer) servl et Context
.getAttribute("onlineUserCount");
} catch (Exception e) {

servl et Cont ext.set Attri bute("onlineUserCount",
onl i neUser Count + 1);
}
return "success";
} else {
return "input";
}

—

The onlineUserCount is accurate only if we also
wite a javax.servlet.http. H t pSessi onLi st ener
i npl enentati on and decrenent the
onlineUser Count attribute value inits
sessi onDestroyed net hod, which is called by the
contai ner when a user session is inactive for
a certain period of tine.
/
public String |ogout() {
i f (sessionMap instanceof SessionMap) {
((Sessi onMap) sessionMap).invalidate();
}

i nt onlineUserCount = O;
synchroni zed (servletContext) {
try {
onl i neUser Count = (Integer) servl et Context
.getAttribute("onlineUserCount");
} catch (Exception e) {
}
servl et Context.set Attri bute("onlineUserCount",
onl i neUser Count - 1);

L B R R I

return "success";

The User class can be used to manage user logins and maintain the number of users
currently logged in. In this application a user can log in by typing in a non-empty user name
and a non-empty password in a Login form.

You can access the HttpServletRequest object because the User class implements
ServiletRequestAware. As demonstrated in the login method, that gets invoked every
time a user logs in, you retrieve the referer header by calling the getHeader method on
the servletRequest object. Verifying that the referer header is not null makes sure that
the action was invoked by submitting the Login form, not by typing the URL of the
User_input action. Next, the login method increments the value of the application
attribute onlineUserCount.

The logout method invalidates the HttpSession object and decrements onlineUserCount.
Therefore, the value of onlineUserCount reflects the number of users currently logged in.

You can test this application by invoking the User_input action using this URL:

http://1 ocal host: 8080/ app03a/ User _i nput . acti on

You will see the Login form like the one in Figure 3.1. You can log in by entering a non-
empty user name and a non-empty password. When you submit the form, the User_login
action will be invoked. If login is successful, you'll see the second page that looks like the

one in Figure 3.2. The number of users online is displayed here.

Figure 3.1. The Login form

2 Login Form - Microsoft Internet Explorer

File Edit View Favarites Tools Help]
: Address |@ htkp: fflocalhost: 5080 app03aser_input, ackion V| Go
i
Login
User Name: | |
Password: | |
|
@ Cone %J Local intranet

Figure 3.2. Displaying the number of users currently logged in

) Menu - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

i Address |@ http: fflocalhost: 8080 app03afUser_login, action; jsess V| a0

Welcome, Mumber of users online: 2

Log out

@ Daone ‘:ﬂ Local intranet

Finally, click the log out link to invoked User_logout.

Passing Static Parameters to An Action

Request parameters are mapped to action properties. However, there's another way of
assigning values to action properties: by passing the values in the action declaration.

An action element in a struts.xml file may contain param elements. Each param element
corresponds to an action property. The Static Parameters (staticParams) interceptor is
responsible for mapping static parameters to action properties.

Here is an example of how to pass static parameters to an action.

<action nanme="M/Action" class="...">
<param nanme="si tel d">cal i f orni aOl</ par anp
<par am nanme="si teType" >ret ai | </ par ane

</ action>

Every time the action MyAction is invoked, its siteld property will be set to "californiaOl' and
its siteType property to "retail."

The ActionSupport Class

The com.opensymphony.xwork2.ActionSupport class is the default action class. Struts
will create an instance of this class if an action declaration does not specify an action class.
You may also want to extend this class when writing action classes.

Since ActionSupport implements the Action interface, you can use the static fields
ERROR, INPUT, LOGIN, NONE, and SUCCESS from a class that extends it. There's
already an implementation of the execute method, inherited from Action, that simply
returns Action.SUCCESS. If you implement the Action interface directly instead of
extending ActionSupport, you have to provide an implementation of execute yourself.
Therefore, it's more convenient to extend ActionSupport than to implement Action.

In addition to execute, there are other methods in ActionSupport that you can override or
use. For instance, you may want to override validate if you're writing code for validating
user input. And you can use one of the many overloads of getText to look up localized
messages in properties files. Input validation is discussed in Chapter 8, "Input Validation"
and we'll look at the getText methods when we discuss internationalization and localization

in Chapter 9, "Message Handling."

For now bear in mind that extending ActionSupport helps.

Results

An action method returns a String that determines what result to execute. An action
declaration must contain result elements that each corresponds to a possible return value
of the action method. If, for example, an action method returns either Action.SUCCESS or
Action.INPUT, the action declaration must have two result elements like these

<action ... >

<result nanme="success"> ... </result>
<result name="input"> ... </result>
</ action>

A result element can have these attributes:

e name. The name of the result that matches the output of the action method. For
example, if the value of the name attribute is "input,"” the result will be used if the
action method returns "input.” The name attribute is optional and its default value is
"success."

e type. The result type. The default value is "dispatcher,” a result type that forwards
to a JSP.

The default values of both attributes help you write shorter configuration. For example,
these result elements

<result name="success type="di spatcher”>/Product.jsp</result>
<result name="input" type="di spatcher">/ProductForm jsp</result>

are the same as these:

<resul t >/ Product.jsp</resul t>
<result nanme="input">/Product Form jsp</result>

The first result element does not have to contain the name and type attributes as it uses
the default values. The second result element needs the name attribute but does not need
the type attribute.

Dispatcher is the most frequently used result type, but it's not the only type available.

Table 3.1 shows all standard result types. The words in brackets in the Result Type
column are names used to register the result types in the configuration file. That's right,
you must register a result type before you can use it.

Table 3.1. Bundled result types

Result Type Description
Chain (chain) Used for action chaining
Dispatcher (dispatcher) The default result type, used for JSP forwarding

FreeMarker (freemarker) Used for FreeMarker integration

Table 3.1. Bundled result types

Result Type Description
HttpHeader (httpheader) Used to send HTTP headers back to the browser
Redirect (redirect) Used to redirect to another URL
Redirect Action (redirect- Used to redirect to another action
action)
Stream (stream) Used to stream an InputStream to the browser
Velocity (velocity) Used for Velocity integration
XSLT (xslt) Used for XML/XSLT integration
PlainText (plaintext) Used to send plain text, normally to show a JSP's
source.

In addition to the ones in Table 3.1, many third party developers deploy plug-ins that

encapsulate new result types. You too can write your own and Chapter 19, "Custom
Result Types" teaches you how.

Each of the result types is explained below.
Chain

The Chain result type is there to support action chaining, whereby an action is forwarded to
another action and the state of the original action is retained in the target action. The
Chaining interceptor makes action chaining possible and since this interceptor is part of
defaultStack, you can use action chaining right away.

The following declarations show an example of action chaining.

<package nane="packagel" extends="struts-default">
<action nane="actionl" class="...">
<result type="chai n">action2</result>
</ action>

<action nane="action2" class="...">
<result type="chain">
<par am nane="act i onNane" >act i on3</ par ane

<par am nane="nanespace" >/ nanespace2</ par an
</result>
</ action>
</ package>

<package nane="package2" nanespace="/nanespace2"
extends="struts-default">

<acti on nane="action3" class="...">
<result>/ MyVi ew. j sp</result>
</ acti on>

</ package>

actionl in packagel is chained to action2, which in turn is chained to action3 in a
different package. Chaining to an action in a different package is allowed as long as you
specify the namespace parameter of the target action.

If action-x is chained to action-y, action-x will be pushed to the Value Stack, followed by
action-y, making action-y the top object in the Object Stack. As a result, both actions can
be accessed from the view. If action-x and action-y both have a property that shares the
same name, you can access the property in action-y (the top object) using this OGNL
expression:

[0] . propertyNane
or

pr opertyName

You can access the property in action-x using this expression:
[1] . pr opert yName

Use action chaining with caution, though. Generally action chaining is not recommended as
it may turn your actions into spaghetti code. If actionl needs to be forwarded to action2,
for example, you need to ask yourself if there's code in action2 that needs to be pushed
into a method in a utility class that can be called from both actionl and action2.

Dispatcher

The Dispatcher result type is the most frequently used type and the default type. This result
type has a location parameter that is the default parameter. Since it is the default
parameter, you can either pass a value to it by using the param element like this:

<result pame="...">
<par am nanme="| ocat i on" >r esour ce</ par an
</result>

or by passing the value to the result element.

<result nanme="...">resource</result>

Use this result type to forward to a resource, normally a JSP or an HTML file, in the same
application. You cannot forward to an external resource and its location parameter cannot
be assigned an absolute URL. To direct to an external resource, use the Redirect result type.

As almost all accompanying applications in this book utilize this result type, a separate
example is not given here.

FreeMarker

This result type forwards to a FreeMarker template. See Chapter 21, "FreeMarker" for
details.

HttpHeader

This result type is used to send an HTTP status to the browser. For example, the app03a
application has this action declaration:

<def aul t-action-ref name="CatchAll"/>

<action nanme="CatchAl |l ">
<result type="httpheader">
<par am nane="st at us" >404</ par an
</result>
</ action>

The default-action-ref element is used to specify the default action, which is the action
that will be invoked if a URI does not have a matching action. In the example above, the
CatchAll action is the default action. CatchAll uses a HttpHeader result to send a 404
status code to the browser. As a result, if there's no matching action, instead of getting
Struts' error messages:

Struts Probl em Report

Struts has detected an unhandl ed exception:

Messages: There is no Action mapped for namespace / and action name
bl ahbl ah

the user will get a 404 status report and will see a default page from the container.

Redirect

This result type redirects, instead of forward, to another resource. This result type accepts
these parameters

e location. Specifies the redirection target.
e parse. Indicates whether or not the value of location should be parsed for OGNL
expressions. The default value for parse is true.

The main reason to use a redirect, as opposed to a forward, is to direct the user to an
external resource. A forward using Dispatcher is preferable when directing to an internal
resource because a forward is faster. Redirection would require a round trip since the client
browser would be forced to re-send a new HTTP request.

Having said that, there is a reason why you may want to redirect to an internal resource.
You normally redirect if you don't want a page refresh invokes the previously invoked
action. For instance, in a typical application, submitting a form invokes a Product_save
action, that adds a new product to the database. If this action forwards to a JSP, the
Address box of the browser will still be showing the URL that invoked Product_save. If the
user for some reason presses the browser's Reload or Refresh button, the same action will
be invoked again, potentially adding the same product to the database. Redirection removes
the association with the previous action as the redirection target has a new URL.

Here is an example of redirecting to an external resource.
<action nane="..." class="...">
<result name="success" type="redirect">
http://ww. exanpl e.comtest. htm
</result>
</ action>

And this to an internal resource:

<action name="..." class="...">
<result nanme="success" type="redirect">
/jsp/ Product.jsp
</result>
</ action>

When redirecting to an internal resource, you specify a URI for the resource. The URI can
point to an action. For instance,

<action name="..." class="...">
<result name="success" type="redirect">
User _i nput. action
</result>
</ action>

In the last two examples, the target object was a resource relative to the current URL.
Redirect does not care if the target is a JSP or an action, it always treat it as if the target is
another page. Contrast this with the Redirect Action result type explained in the next
section.

The underlying class for the Redirect result type calls
HttpServietResponse.sendRedirect. Consequently, the action that was just executed is
lost and no longer available. If you need the state of the source action available in the
target destination, you can pass data through the session or request parameters. The
RedirectTest action below redirects to the User_input action and passes the value of the
userName property of the TestUser action class as a userName request parameter. Note
that the dynamic value is enclosed in ${ and }.

<action nanme="RedirectTest" cl ass="app03a. Test User" >
<result type="redirect">
User _i nput. acti on?user Nanme=${ user Nane}
</result>
</ action>

Note also that you need to encode special characters such as & and + . For example, if the
target is http://www.test.com?user=I&site=4, you must change the & to &.

<result nanme="login" type="redirect">
http://ww.test.conPuser=1&anp; site=4
</result>

Redirect Action

This result type is similar to Redirect. Instead of redirecting to a different resource,
however, Redirect Action redirects to another action. The Redirect Action result type can
take these parameters:

e actionName. Specifies the name of the target action. This is the default attribute.
e namespace. The namespace of the target action. If no namespace parameter is
present, it is assumed the target action resides in the same namespace as the

enclosing action.

For example, the following Redirect Action result redirects to a User_input action.

<result type="redirect-action">
<par am nanme="act i onNane" >User _i nput </ par an®
</result>

And since actionName is the default parameter, you can simply write:

<result type="redirect-action">User_input</result>

Note that the value of the redirection target is an action name. There is no .action suffix
necessary as is the case with the Redirect result type.

In addition to the two parameters, you can pass other parameters as request parameters.
For example, the following result type

<result type="redirect-action">
<par am nanme="act i onNanme" >User _i nput </ par an
<par am nane="user | d" >xyz</ par ane
<par am nane="ar ea" >ga</ par an

</result>

will be translated into this URI:

User _i nput. acti on?user| d=xyz&ar ea=ga

Stream

This result type does not forward to a JSP. Instead, it sends an output stream to the
browser. See Chapter 13, "File Download" for examples.

Velocity

This result type forwards to a Velocity template. See Chapter 20, "Velocity" for details.
XSLT

This result type uses XML/XSLT as the view technology. This result type is explained further
in Chapter 22, “XSLT."

PlainText

A PlainText result is normally used for sending a JSP's source. For example, the action
Source_show below displays the source of the Menu.jsp page.

<action name="Source_show' class="...">
<result name="success" type="plaintext">/jsp/ Menu.jsp</result>
</ action>

Exception Handling with Exception Mapping

In a perfect world, all computer programs would be bug-free. In the real world, however,
this is not the case. No matter how you take care to handle your code, some bugs might
still try to creep out. Sometimes it's not even your fault. Third-party components you use in

your code may have bugs that are not known at the time you deploy your application. Any
uncaught exception will result in an embarrassing HTTP 500 code (internal error).

Fortunately for Struts programmers, Struts lets you catch whatever you cannot catch in
your action classes by using the exception-mapping element in the configuration file.

This exception-mapping element has two attributes, exception and result. The exception
attribute specifies the exception type that will be caught. The result attribute specifies a
result name, either in the same action or in the global-results declaration, that will be
executed if an exception is caught. You can nest one or more exception-mapping elements
under your action declaration. For example, the following exception-mapping element
catches all exceptions thrown by the User_save action and executes the error result.

<action nanme="User _save" class="...">
<excepti on- mappi ng excepti on="java. | ang. Excepti on"
result="error"/>
<result name="error">/jsp/Error.jsp</result>
<resul t>/j sp/ Thanks. j sp</resul t>
</ action>

You can also provide a global exception mapping through the use of the global-exception-
mappings element. Any exception-mapping declared under the global-exception-mappings
element must refer to a result in the global-results element. Here is an example of global-
exception-mappings.

<gl obal -resul t s>
<result name="error">/jsp/Error.jsp</result>
<result name="sql Error">/jsp/ SQLError.jsp</result>
</ gl obal -resul t s>
<gl obal - excepti on- mappi ngs>
<excepti on- mappi ng excepti on="java. sql . SQLExcepti on"
result="sql Error"/>
<excepti on- mappi ng excepti on="java.l ang. Excepti on"
result="error"/>
</ gl obal - excepti on- mappi ngs>

Behind the scenes is the Exception interceptor that handles all exceptions caught. Part of
the default stack, this exception adds two objects to the Value Stack (which you'll learn in
Chapter 4, "OGNL"), for every exception caught by an exception-mapping element.

e exception, that represents the Exception object thrown
e exceptionStack, that contains the value from the stack trace.

This way, you can display the exception message or the stack trace in your view, if you so
choose. The property tag that you will learn in Chapter 5, "Form Tags" can be used for this
purpose:

<s:property val ue="exception. nessage"/>
<s:property val ue="excepti onStack"/ >

Wildcard Mapping

A large application can have dozens or even a hundred action declarations. These
declarations can clutter the configuration file and make it less readable. To ease this
situation, you can use wildcard mapping to merge similar mappings to one mapping.

Consider these package and action declarations.

<package nane="wi | dcar dMappi ngTest" nanespace="/w | d"
extends="struts-defaul t">
<acti on nane="Book add" cl ass="app03a. Book" nethod="add">
<resul t >/ j sp/ Book. j sp</resul t>
</ action>
</ package>

You can invoke the Book_ add action by using this URI that contains the combination of the
package namespace and the action name:

/wi | d/ Book_add. acti on

However, if there is no action with the name Book_add, Struts will match the URI with any
action name that includes the wildcard character *. For example, the same URI will invoke
the action named *_add if Book_add does not exist.

Now consider this package declaration.

<package nane="wi | dcar dMappi ngTest" nanespace="/w | d"
extends="struts-default">
<action name="*_add" cl ass="app03a. Book" nethod="add">
<resul t >/ sp/ Book. j sp</resul t>
</ action>
</ package>

The action in the package above can be invoked using any URI that contains the correct
namespace and _add, including

/wi | d/ Book _add. acti on

/wi | d/ Aut hor _add. acti on
/wi | d/ _add. action

/wi | d/ What ever _add. acti on

If more than one wildcard match was found, the last one found prevails. In the following
example, the second action will always get invoked.

<package nane="wi | dcar dMappi ngTest" nanespace="/w | d"
extends="struts-default">
<action name="*_add" cl ass="app03a. Book" nethod="add">
<resul t >/ j sp/ Book. j sp</resul t>

</ action>
<action nane="*" cl ass="app03a. Aut hor" net hod="add">
<resul t>/jsp/ Aut hor.jsp</result>
</ action>
</ package>

If multiple matches were found, the pattern that does not use a wildcard character wins.
Look at these action declarations again:

<package nane="wi | dcar dMappi ngTest" nanespace="/w | d"
extends="struts-defaul t">
<acti on name="Book_add" cl ass="app03a. Book" net hod="add">
<resul t >/ j sp/ Book. j sp</resul t>
</ action>
<action nane="*_add" cl ass="app03a. Aut hor" net hod="add">
<resul t>/jsp/ Aut hor.jsp</result>
</ action>
</ package>

The URI /wild/Book_add.action matches both actions. However, since the first action
declaration does not use a wildcard character, it will take precedence over the second.

There's more to it.

The part of the URI that was matched by the wildcard is available as {1}. What it means is
if you use the URI /wild/MyAction_add.action and it matches an action whose name is

* add, {1} will contain MyAction. You can then use {1} to replace other parts of the
configuration.

For instance, using both * and {1} the action declarations

<package nane="wi | dcar dMappi ngTest" nanespace="/w | d"
extends="struts-default">
<action nane="Book_ add" cl ass="app03a. Book" nethod="add">
<resul t >/ j sp/ Book. j sp</resul t>
</ action>
<action nane="Aut hor add" cl ass="app03a. Aut hor" net hod="add">
<resul t>/jsp/ Aut hor. jsp</resul t>
</ action>
</ package>

can be replaced by this one:

<package nane="wi | dcar dMappi ngTest" nanespace="/w | d"
extends="struts-defaul t">
<action name="*_add" class="app03a.{1}" nethod="add">
<result>/jsp/{1}.]sp</result>
</ action>
</ package>

The URI /wild/Book_add.action will invoke the action *_add, where "Book" was matched by
* . The class name will be app03a.Book and the JSP to forward to will be Book.jsp.

Using /wild/Author_add.action, on the other hand, will also invoke the action *_add, where
"Author" was matched by *. The class name will be app03a.Author and the JSP to forward
to will be Author.jsp.

If you try /wild/Whatever_add.action, it will still match the action *_add. However, it will
throw an exception because there are no Whatever class and Whatever.jsp JSP.

Using multiple wildcards is possible. Consider the following:

<package nane="wi | dcar dMappi ngTest" nanespace="/w | d"

extends="struts-defaul t">

<acti on nane="Book add" cl ass="app03a. Book" nethod="add">
<resul t >/ sp/ Book. j sp</resul t>

</ action>

<action nane="Book edit" cl ass="app03a. Book" nethod="edit">
<resul t >/ j sp/ Book. j sp</resul t>

</ action>

<acti on name="Book_del ete" cl ass="app03a. Book" net hod="del ete">
<resul t >/ j sp/ Book. j sp</resul t>

</ action>

<action nane="Aut hor add" cl ass="app03a. Aut hor" net hod="add">
<resul t>/jsp/ Aut hor. jsp</resul t>

</ action>

<action nane="Author_edit" class="app03a. Aut hor" nethod="edit">
<resul t>/jsp/ Aut hor.jsp</result>

</ action>

<action nane="Aut hor del ete" cl ass="app03a. Aut hor"

nmet hod="del et e" >

<resul t>/jsp/ Aut hor.jsp</result>

</ action>

</ package>

You've seen that Book _add and Author_add can be combined into *_add. By extension,
Book_edit and Author_edit can also merge, and so can Book delete and Author_delete. If
you note that an action name contains the combination of the action class name and the
action method name and realizing that {1} contains the first replacement and {2} the
second replacement, you can shorten the six action declarations above into this.

<package nane="wi | dcar dMappi ngTest" namespace="/w | d"
extends="struts-default">
<action nane="*_*" class="app03a.{1}" nethod="{2}">
<result>/jsp/{1}.]sp</result>
</ action>
</ package>

For example, the URI /wild/Book_edit.action will match *_*. The replacement for the first *
is Book and the replacement for the second * is edit. Therefore, {1} will contain Book and

{2} will contain edit. /wild/Book_edit.action consequently will invoke the app03a.Book class
and execute its edit method.

Note

{0} contains the whole URI.

Note also that * matches zero or more characters excluding the slash (/') character. To
include the slash character, use **. To escape a character, use the '\' character.

Dynamic Method Invocation

In Struts jargon the '!" character is called the bang notation. It is used to invoke a method
dynamically. The method may be different from the one specified in the action element for
that action.

For example, this action declaration does not have a method attribute.

<action nanme="Book" class="app03a. Book" >

As a result, the execute method on Book will be invoked. However, using the bang notation
you can invoke a different method in the same action. The URI /Book!edit.action, for
example, will invoke the edit method on Book.

You are not recommended to use dynamic method invocation because of security concerns.
You wouldn't want your users to be able to invoke methods that you do not expose.

By default, dynamic method invocation is enabled. The default.properties file specifies a
value of true for struts.enable.DynamicMethodlnvocation:

struts. enabl e. Dynani cMet hodl nvocation = true

To disable this feature, set this key to false, either in a struts.properties file or in a
struts.xml file using a constant element like this:

<constant nane="struts. enabl e. Dynani cMet hodl nvocat i on"
val ue="fal se" />

Testing Action Classes

Since action classes are POJO classes, testing action classes is easy. All you need is
instantiate the class, set its properties, and call its action method. Here is an example.

MyActi on action = new MyAction();
action. set User Nanme("jon");

action. set Password("secret");
String result = action.execute();
if ("success".equal s(result)) {
/] action okay
} else
/'l action not okay
}

Summary

Struts solves common problems in web application development such as page navigation,
input validation, and so on. As a result, you can concentrate on the most important task in
development: writing business logic in action classes. This chapter explained how to write
effective action classes as well as related topics such as the default result types, global
exception mapping, wildcard mapping, and dynamic method invocation.

Chapter 4. OGNL

The view in the Model-View-Controller (MVC) pattern is responsible for displaying the model
and other objects. To access these objects from a JSP, you use OGNL (Object-Graph
Navigation Language), the expression language Struts inherits from WebWork.

OGNL can help you do the following.

e Bind GUI elements (text fields, check boxes, etc) to model objects and converts
values from one type to another.

e Bind generic tags with model objects.

e Create lists and maps on the fly, to be used with GUI elements.

¢ Invoke methods. You can invoke any method, not only getters and setters.

OGNL is powerful, but only part of its power is relevant to Struts developers. This chapter
discusses OGNL features that you will need for Struts projects. If you're interested in
learning other features of OGNL, visit these websites.

http://ww. opensynphony. coni ognl
http://ww. ognl . org

Note

After reading this chapter the first time, do not worry if you don't get a firm understanding
of OGNL. Just skip to the next chapter and see how OGNL is used in form tags and generic
tags. Once you've started using it, you can revisit this chapter for reference.

The Value Stack

For each action invocation, an object called the Value Stack is created prior to action
method execution. The Value Stack is used to store the action and other objects. The Value
Stack is accessed during processing (by interceptors) and by the view to display the action
and other information. In order for a JSP to access the Value Stack, the Struts framework
stores it as a request attribute named struts.valueStack.

There are two logical units inside the Value Stack, the Object Stack and the Context Map, as

illustrated in Figure 4.1. Struts pushes the action and related objects to the Object Stack
and pushes various maps to the Context Map.

Figure 4.1. The Value Stack

Object Stack Context Map
Object 0 request
Ohyect 1 At
parameters
session
application
Ohject n

Note
The term Value Stack is often used to refer to the Object Stack in the Value Stack.
The following are the maps that are pushed to the Context Map.

parameters. A Map that contains the request parameters for the current request.
request. A Map containing all the request attributes for the current request.
session. A Map containing the session attributes for the current user.
application. A Map containing the ServletContext attributes for the current
application.

e attr. A Map that searches for attributes in this order: request, session, and
application.

You can use OGNL to access objects in the Object Stack and the Context Map. To tell the
OGNL engine where to search, prefix your OGNL expression with a # if you intend to access
the Context Map. Without a #, search will be conducted against the Object Stack.

Note

A request parameter always returns an array of Strings, not a String. Therefore, to access
the number of request parameters, use this

#par anet er s. count [0]

and not

#par amet er s. count

Reading Object Stack Object Properties

To access the property of an object in the Object Stack, use one of the following forms:

obj ect . propert yNane
obj ect[' propertyNane']

obj ect [" propertyNanme"]

Object stack objects can be referred to using a zero-based index. For example, the top
object in the Object Stack is referred to simply as [0] and the object right below it as [1].
For example, the following expression returns the value of the message property of the
object on top:

[0] . nessage

Of course, this can also be written as [0] ['message"] or [0] ['message'].

To read the time property of the second object in the stack, you can use [1].time or
[1]["time"] or [1]['time'].

For example, the property tag, one of the many tags you'll learn in Chapter 5, "Form Tags,"
is used to print a value. Using the property tag to print the time property of the first stack
object, you can write any of the following:

<s:property value="[0].tine"/>

<s:property value="[O]["time']"/>
<s:property value="[O]["tine"]"' />

An important characteristic of the OGNL implementation in Struts is that if the specified
property is not found in the specified object, search will continue to the objects next to the
specified object. For example, if the top object does not have a name property, the
following expression will search the subsequent objects in the Object Stack until the
property is found or until there's no more object in the stack:

[0]. nane

The index [n] specifies the starting position for searching, rather than the object to search.
The following expression searches from the third object in the stack for the property user.
[2]["user"]

If you want a search to start from the top object, you can remove the index entirely.

Therefore,

[0]. password

is the same as

password

Note also that if the returned value has properties, you can use the same syntax to access
the properties. For instance, if a Struts action has an address property that is returns an
instance of Address, you can use the following expression to access the streetNumber
property of the address property of the action.

[0] . addr ess. street Nunber

Reading Context Map Object Properties

To access the property of an object in the Context Map, use one of these forms.
#obj ect . propert yNane
#obj ect[' propertyNanme']

#obj ect [" propertyName" |

For example, the following expression returns the value of the session attribute code.

#sessi on. code

This expression returns the contactName property of the request attribute customer.

#request["customer"]["cont act Nanme"]

The following expression tries to find the lastAccessDate attribute in the request object. If
no attribute is found, the search will continue to the session and application objects.

#attr[' | ast AccessDat e']

Invoking Fields and Methods

You can invoke static fields and methods in any Java class, not necessarily on objects that
are loaded to the Value Stack. In addition, you can call public fields and methods (static or
otherwise) on any object in the Value Stack. In both cases, you can pass arguments to a
method.

To call a static field or method, use this syntax:

@ullyQualifiedd assNane@ i el dNane

@ul lyQualifiedd assNane@ret hodNane(ar gunent Li st)

As an example, this expression accesses the static field DECEMBER in java.util.Calendar:

@ ava. util . Cal endar @ECEMBER

To call the static method now in the app04.Util class (shown in Listing 4.1), use this:

@ppO4a. Uti | @ow)

Listing 4.1. The now static method

package appO4a;
i mport java.util.Date;
public class Uil {
public static Date now) {
return new Date();
}

To call an instance field and method, use this syntax:

obj ect . fi el dNane

obj ect . net hodName(ar gunent Li st)

Here object represents a reference to an Object Stack object. You use the same syntax as
when accessing a property. For example, this refers to the first object in the stack:

[0]

To call the datePattem field in appO4.Test2Action (shown in Listing 4.2), use this
expression.

[0].datePattern

To call the repeat method in app04a.Test2Action, use this:

[0].repeat (3, "Hello")

Listing 4.2. The repeat method

public String repeat(int count, String s) {
StringBuilder sb = new StringBuilder();
for (int i =0; i < count; i++) {
sb. append(s);
}

return sb.toString();

Working with Arrays
You can read a property that returns an array the same way you would any property. An
array property returns comma-separated elements without brackets. For example, the

colors property whose get method is shown in Listing 4.3 will return this.

bl ue, green, red

Listing 4.3. The getColors method

public String[] getColors() {
String[] colors = {"blue", "green", "red"};
return col ors;

You can access individual elements by using the same notation you use to access a Java
array element. For instance, this returns the first color in colors:

col ors[0]

You can also call an array's length field to find out how many elements it has. For example,
this returns 3.

colors.length

Working with Lists

You can read a property of type java.util.List just you would any property. The return
value of a List is a String representation of its comma-separated elements in square

brackets. For example, the countries property whose get method is shown in Listing 4.4
returns this.

[Australia, Fiji, New Zeal and, Vanuat u]

Listing 4.4. The getCountries method

public List<String> getCountries() {
Li st<String> countries = new ArrayList<String>();
countries.add("Australia");
countries.add("Fiji");
countries. add(" New Zeal and");
countries. add(" Vanuat u");
return countries;

You can access individual elements in a list by using the same notation you would use to
access an array element. For instance, this returns the first country in countries:

countries[0]

You can enquiry about a List's size by calling its size method or the special keyword size.
The following returns the number of elements in countries.

countries. size
countries.size()

The isEmpty keyword or a call to its iIsSEmpty method tells you whether or not a List is
empty.

countries.isEnpty
countries.isEnmpty()

You can also use OGNL expressions to create Lists. This feature will come in handy when
you're working with form tags that require options such as select and radio. To create a
list, you use the same notation as when declaring an array in Java. For example, the
following expression creates a List of three Strings:

{"Al aska", "California", "Wshington"}

This returns the first element in the string array.

{"Al aska", "California", "Wshington"}[O0]

The following creates a List of two Integers. The primitive elements will be automatically
converted to Integers.

{6, 8}

Working with Maps

Referencing a Map property returns all its key/value pairs in this format:
{key-1=val ue-1, key-2=value-2, ... , key-n=val ue-n}

For example, the cities property whose getter is shown in Listing 4.5 returns this.
{UT=Salt Lake City, CA=Sacranento, WA=Q ynpi a}

Listing 4.5. The getCities method

public Map<String, String> getCities() {
Map<String, String> cities = new HashMap<String, String>();
cities.put("CA", "Sacranmento");
cities.put("WA", "OAynpia");
cities.put("UT", "Salt Lake City");
return cities;

To retrieve a Map's value, use this format:

map[key]

For instance, to get the city whose key is 2, use

cities["CA"]

or

cities['CA]

You can use size or size() to get the number of key/value pairs in a Map.

cities.size
cities.size()

You can use isEmpty or isEmpty to find out if a Map is empty.

cities.isEnmpty
cities.isEnpty()

And yes, you can access the Maps in the Context Map too. Just don't forget to use a #
prefix. For example, the following expression accesses the application Map and retrieves the
value of "code":

#appl i cation["code"]

You can create a Map by using this syntax:

#{ key-1:value-1, key-2:value-2, ... key-n:value-n }

There can be empty spaces between a key and the colon and between a colon and a value.
For example, the cities Map can be rewritten by this OGNL expression:

#{ "CA":"Sacranento", "WA":"Oynpia", "UT":"Salt Lake City" }

This will be useful when you have started working with tags that need options, such as radio
and select.

JSP EL: When OGNL Can't Help

There are times when OGNL and the Struts custom tags are not the best choice. For
example, to print a model object on a JSP, you use the property tag that is included in the
Struts tag library. Like this:

<s:property val ue="serverVal ue"/ >

However, you can achieve the same using this shorter JSP Expression Language expression:

${ server Val ue}

Also, there's no easy way to use Struts custom tags to print a request header. With EL, it's
easy. For instance, the following EL expression prints the value of the host header:

${ header. host }

You will therefore find it practical to use OGNL and EL together. The EL is explained in
Appendix B, "The Expression Language."

Summary

The view in the Model-View-Controller (MVC) pattern is responsible for displaying the model
and other objects and you use OGNL to access the objects. This chapter discussed the Value
Stack that stores the action and context objects and explained how to use OGNL to access

them and create arrays, lists, and maps.

Chapter 5. Form Tags

Struts ships with a tag library that incorporates two types of tags: User Interface (Ul) tags
and non-Ul tags. The Ul tags are further categorized into two groups, those used for data
entry and those for displaying error messages. The Ul tags in the first group are called the
form tags and are the subject of discussion of this chapter. The Ul tags for displaying error
messages are explained in Chapter 8, "Input Validation.” Non-UI tags help with control flow
and data access and are covered in Chapter 6, "Generic Tags." In addition, there are also
tags that assist with AJAX programming and are discussed in Chapter 27, "AJAX."

form is the main tag in the form tags category. This tag is rendered as an HTML form
element. Other form tags are rendered as input elements. The main benefit of using the
form tags is when input validation fails and the form is returned to the user. With manual
HTML coding, you have to worry about repopulating the input fields with the values the user
previously entered. With the form tags, this is taken care of for you.

Another advantage of using the form tags is that they help with layout and there are several
layout templates for each tag. These layout templates are organized into themes and Struts
comes with several themes, giving you flexibility to choose a layout that is suitable for your
application.

This chapter explains each of the form tags in a separate section. Before you learn the first
tag, however, it is beneficial to discuss how to use the Struts tags and peruse the common
attributes shared by all the tags. After some basic tags, three attributes—Iist, listKey, and
listValue— are given a separate section because of their importance in tags that use

options, including radio, combobox, select, checkboxlist, and doubleselect. After all form
tags are covered, themes are explained at the end of this chapter.

Using Struts Tags

You can use the Ul and non-Ul tags by declaring this taglib directive at the top of your JSP.
<U@taglib prefix="s" uri="/struts-tags" %

A tag attribute can be assigned a static value or an OGNL expression. If you assign an OGNL
expression, the expression will be evaluated if you enclose it with %{ and }. For instance,
the following label attribute is assigned the String literal "userName"

| abel =" user Nane"

This one is assigned an OGNL expression userName, and the value will be whatever the

value of the userName action property is:

| abel =" % user Nane}"

This one assigns the label attribute the value of the session attribute userName:

| abel =" 9% #sessi on. user Nane}"

This value attribute is assigned 6:

value="%1 + 5}"

Common Attributes

Tag classes of all Struts tags are part of the org.apache.struts2.components package
and all Ul tags are derived from the UlBean class. This class defines common attributes

that are inherited by the Ul tags. Table 5.1 lists the attributes.

Table 5.1. The Common attributes

Name Data Description
Type

cssClass String [The CSS class for the rendered element.

cssStyle String |[The CSS style for the rendered element.

title String Specifies the HTML title attribute.

disabled String |Specifies the HTML disabled attribute.

label* String |Specifies the label for a form element in the xhtml and ajax
theme.

labelPosition* String |Specifies the label position in the xhtml and ajax theme.
Allowed values are top and left (default).

key String [The name of the property this input field represents. It is a
shortcut for the name and label attributes

requiredposition*|String |Specifies the required label position of a form element in
the xhtml and ajax theme. Possible values are left and right
(default).

name String |Specifies the HTML name attribute that in an input element

Table 5.1. The Common attributes

Name Data Description
Type

maps to an action property.

required* boolean |In the xhtml theme this attribute indicates whether or not
an asterisk (*) should be added to the label.

tablndex String |Specifies the HTML tabindex attribute.

value String |Specifies the value of a form element.

An attribute name with an asterisk indicates that the attribute is only available if a non-
simple theme is used. Themes are explained toward the end of this chapter.

The name attribute is probably the most important one. In an input tag it maps to an action
property. Other important attributes include value, label, and key. The value attribute
holds the user value. You seldom use this attribute in an input tag unless the input tag is a
hidden field.

By default, each input tag is accompanied by a label element. The label attribute specifies
the text for the label element. The key attribute is a shortcut for the name and label
attributes. If the key attribute is used, the value assigned to this attribute will be assigned
to the name attribute and the value returned from the call to getText(key) will be
assigned to the label attribute. In other words,

key="aKey"

is the same as

nanme="akKey" | abel ="% get Text (' aKey"')}"

If both the key and name attributes are present, the explicit value for name takes
precedence and the label attribute is assigned the result of getText(key). If the key
attribute and the label attribute are present, the value assigned to the label attribute will
be used.

The key attribute will be discussed further in Chapter 9, "Message Handling."

In addition to the common attributes in Table 5.1, there are also attributes related to
templates, JavaScript, and tooltips. These attributes are given in Table 5.2, Table 5.3,
and Table 5.4, respectively.

Table 5.2. Template-related attributes
Name |Data Type Description
templateDir String The directory in which the template resides
theme String The theme name
template |String The template name

Table 5.3. Javascript-related attributes

Name Data Type Description

onclick String Javascript onclick attribute

ondblclick String Javascript ondblclick attribute

onmousedown String Javascript onmousedown attribute
onmouseup |String Javascript onmouseup attribute
onmouseover (String Javascript onmouseover attribute
onmouseout |String Javascript onmouseout attribute
onfocus String Javascript onfocus attribute
onblur String Javascript onblur attribute
onkeypress String Javascript onkeypress attribute

onkeyup String Javascript onkeyup attribute

Table 5.3. Javascript-related attributes

Name Data Type Description
onkeydown String Javascript onkeydown attribute
onselect String Javascript onselect attribute
onchange String Javascript onchange attribute

Table 5.4. Tooltip-related attributes
Name Data Description
Type

tooltip String The text used as a tooltip.

tooltiplconPath

String

The path to a tooltip icon. The default value is
/struts/static/tooltip/tooltip.gif

tooltipDelay

String

The delay (in milliseconds) from the time the mouse hovers over
the tooltip icon to the time the tooltip is shown. The default
value is 500.

The form Tag

The form tag renders an HTML form. Its attributes are given in Table 5.5. All attributes

are optional.

Table 5.5. form tag attributes

Name

Data
Type

Default Value Description

acceptcharset |String

Comma or space delimited charsets that are

Table 5.5. form tag attributes

Name Data | Default Value Description
Type

accepted for this form.

action String current action [The action to submit this form to

enctype String The form enctype attribute

method String post The form method

namespace current The namespace of the action

namespace

onsubmit String Javascript onsubmit attribute

openTemplate String Template to use for opening the rendered
form

portletMode |String The portlet mode to display after the form
submit

target String The form target attribute

validate Boolean [false Indicates if client-side validation should be
performed in xhtml/ajax themes

windowState |[String The window state to display after the form

submit

The following is an example of the form tag:

<s:fornp

</s:fornmp

By default a form tag is rendered as an HTML form laid out in a table:
<formid="..." nanme="..." nethod="POST" action="..."
onsubm t="return true;">
<t abl e cl ass="wwFor nTabl e" >

</t abl e>
</fornp

An input field nested within a form tag is rendered as a table row. The row has two fields,
one for a label and one for the input element. A submit button is translated into a table row
with a single cells that occupies two columns. For instance, the following tags

<s:formaction="...">
<s:textfield name="user Nane" | abel ="User Nane"/>
<s: password nane="password" | abel =" Password"/>
<s:subnmt/>

</s:forme

are rendered as

<formid="User | ogi n" nane="User | ogi n" onsubnit="return true;"
action="..." nethod="POST">
<t abl e cl ass="wwFor niTabl e">
<tr>
<td cl ass="tdLabel ">
<l abel for="User | ogi n_userNane" cl ass="I abel ">
User Nane:
</ | abel >
</td>
<t d>
<i nput type="text" nanme="user Nane" val ue=
i d="User _| ogi n_user Name"/ >

</td>
</tr>
<tr>
<td cl ass="tdLabel ">
<l abel for="User | ogin_password" class="Iabel ">
Passwor d:
</ | abel >
</td>
<td>
<i nput type="password" name="password"
i d="User | ogi n_password"/>
</td>
</tr>
<tr>
<td col span="2">
<div align="right">
<i nput type="submt" id="User_login_0" value="Submt"/>
</ div>
</td>

</[tr>
</ tabl e>
</fornp

You can change the default layout by changing the theme. Themes are discussed in the
section "Themes" near the end of this chapter.

The textfield, password, hidden Tags

The textfield tag is rendered as an input text field, the password tag as a password field,
and the hidden tag as a hidden field. Attributes common to textfield and password are

given in Table 5.6.

Table 5.6. textfield and password tags attributes

Name Data Default Description
Type Value
maxlengthlinteger The maximum number of characters the rendered

element can accept

readonly |boolean [false Indicates if the input is read-only

size integer The size attribute

The password tag extends textfield by adding a showPassword attribute. This attribute
takes a boolean value and its default value is false. It determines whether or not the
entered value will be redisplayed when the containing form fails to validate. A value of true
redisplays the password when control is redirected back to the form.

For example, the following password tag has its showPassword attribute set to true.

<s:form action="Product save">
<s: password key="password" showPassword="true"/>

</s:fo.rm.>

The TextField action in the appO5a application shows how you can use the textfield,
password, and hidden tags. The action is associated with the TextFieldTestAction class

in Listing 5.1 and is forwarded to the TextField.jsp page in Listing 5.2.

Listing 5.1. The TextFieldTestAction class

package app05a;

i mport com opensynphony. xwor k2. Acti onSupport ;

public class TextFiel dTest Acti on extends ActionSupport {
private String user Nane;
private String password,
private String code

/1 getters and setters are not shown to save space

Listing 5.2. The TextField.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>textfield Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dth: 150px" >
<h3>Logi n</ h3>
<s:fornp
<s: hi dden nane="code" val ue="1"/>
<s:textfield nane="user Nane" | abel ="User Nane"
tooltip="Enter User Nane"
| abel position="top"
/>
<s: password nanme="password" | abel =" Password"
toolti p="Enter Password"
| abel position="top" />
/>
<s:subnit val ue="Login"/>
</s:fornp
</ di v>
</ body>
</htm >

You can test the action by directing your browser here:

http://1 ocal host: 8080/ app0O5a/ Text Fi el d. acti on

The rendered form and input elements are shown in Figure 5.1. The tooltip attribute for
each input tag results in the default tooltip icon to be displayed.

Figure 5.1. Using textfield, password, and hidden

2} textfield Tag Example - Microsoft Internet E... |Z||E|E|
.l'r

File Edit Wiew Favoribes Tools Help]

: Address ISE:[http:/ localhost: S080) app0Sa) TextField, ackion V| 50

Login

ser Name: ..

Password: ..

| |

2] bare ";_-J Local inkranet

The submit Tag

The submit tag renders a submit button. This tag can have one of three rendering types,
depending on the value assigned to its type attribute. The following are valid values for the
type attribute:

e input. Renders submit as <input type="submit" .../>
e button. Renders submit as <button type="submit" .../>
e image. Renders submit as <input type="image" ... />

The attributes for the submit tag are listed in Table 5.7.

Table 5.7. submit tag attributes

Name | Data Default Description
Type Value

action |[String The HTML action attribute

align |String The HTML align attribute

method String The method attribute

type String linput The type of the rendered element. The value can be

input, button, or image.

For example, the following is a submit button whose value is "Login":

<s:submt val ue="Login"/>

The reset Tag

The reset tag renders a reset button. It can have one of two rendering types, depending on
the value assigned to its type attribute. The following are valid values for the type
attribute:

e input. Renders reset as <input type="reset" .../>
e button. Renders reset as <button type="reset" .../>

The reset tag attributes are given in Table 5.8.

Table 5.8. reset tag attributes

Name | Data Default Description
Type Value

action |[String The HTML action attribute

align |String The HTML align attribute.

method String The method attribute

type String input The type of the rendered element. The value can be

input or button.

The following is a reset tag.

<s:reset val ue="Reset to previous values" />

The label Tag

The label tag is rendered as an HTML label element. Its attribute is given in Table 5.9.

Table 5.9. label tag attribute
Name Data Type Default Value Description

for |String The HTML for attribute

The head Tag

The head tag is rendered as an HTML head element. It is rarely used. However, the
identically named tag in the AJAX tag library plays an important role in AJAX programming
with Struts.

The textarea Tag

This tag is rendered as a textarea element. Its attributes are shown in Table 5.10.

Table 5.10. textarea tag attributes
Name |Data Type Default Value Description
cols integer The HTML cols attribute.
readonlyboolean |false Indicates if the textarea is read only.
rows Integer The HTML rows attribute.
wrap boolean The HTML wrap attribute

For example, the TextAreaTestAction class in Listing 5.3 has a property that is mapped
to a textarea tag on the TextArea.jsp page in Listing 5.4.

Listing 5.3. The TextAreaTestAction class

package app05a;

i mport com opensynphony. xwor k2. Acti onSupport ;

public class Text AreaTest Acti on extends ActionSupport {
private String description;
/1 getter and setter not shown

Listing 5.4. The TextArea.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title>textfield Tag Exanple</title>

<style type="text/css">@nport url (css/main.css);</style>

</ head>

<body>

<di v id="gl obal" style="wi dth: 450px" >
<s:fornmp

<s:textarea nane="description" | abel ="Description"
col s="35" rows="8"
/>
<s:reset/>
<s:subnit/>
</s:fornmp
</ di v>

</ body>
</htm >

To test this example, direct your browser to this URL:

http://1 ocal host: 8080/ app05a/ Text Ar ea. acti on
Figure 5.2 shows what the textarea tag looks like.

Figure 5.2. Using textarea

2} textfield Tag Example - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help ﬂ'r
i Address |@ http: fflocalhost: 8080/ app0Sa) TexkArea, ackion 1"~"| GO
Description:

I@ Cone ‘ﬂ Local intranet

The checkbox Tag

The checkbox tag renders an HTML checkbox. There is only one attribute specific to this

tag, fieldvalue, which is given in Table 5.11. You will learn at the end of this section
that this attribute can be very useful.

Table 5.11. checkbox tag attribute
Name |Data Type Default Value Description

fieldValue|String true The actual value of the checkbox.

Like other input elements, an HTML checkbox adds a request parameter to the HTTP request
when the containing form is submitted. The value of a checked checkbox is "on." If the
name of the checkbox element is subscribe, for example, the key/value pair of the
corresponding request parameter is

subscri be=on

However, an unchecked checkbox does not add a request parameter. It would be good if it
sent this:

subscri be=of f

But it does not.

And here lies the problem: There's no way for the server to know if a checked checkbox has
been unchecked. Consider an object in the HttpSession that has a boolean property linked
with a checkbox. A value of "on" (when the check box is checked) would invoke the
property setter and set the value to true. An unchecked checkbox would not invoke the
property setter and, as a result, if the previous value was true, it would remain true.

The checkbox tag overcomes this limitation by creating an accompanying hidden value. For
example, the following checkbox tag

<s:checkbox | abel ="i nSt ock" key="inSt ock"/>

is rendered as

<i nput type="checkbox" nane="inStock" val ue="true"
i d="Acti onNane_i nSt ock"/>
<i nput type="hidden" name="__checkbox_i nSt ock" val ue="true"/>

If the checkbox is checked when the containing form is submitted, both values (the check
box and the hidden value) will be sent to the server. If the checkbox is not checked, only
the hidden field is sent, and the absence of the checkbox parameter indicates that the
checkbox was unchecked. The Checkbox interceptor helps make sure the property setter
gets invoke regardless the state of the checkbox. A checked checkbox will pass the String

literal ""true™ to the property setter and an unchecked one will pass the String literal
“false."

As an example, the CheckBoxTestAction class in Listing 5.5 has boolean properties
that are mapped to three checkbox tags on the CheckBox.jsp page in Listing 5.6.

Listing 5.5. The CheckBoxTestAction class

package app05a;

i mport com opensynphony. xwor k2. Act i onSupport ;

public class CheckBoxTestAction extends ActionSupport {
private bool ean daily;
private bool ean weekl y;
private bool ean nonthly;

/1l getters and setters have been del et ed

Listing 5.6. The CheckBox.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<titl e>checkbox Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dth: 300px" >
<h3>Subscri pti on Type</ h3>
<s:forne
<s: checkbox name="daily" | abel="Daily news alert"/>
<s: checkbox name="weekl y" | abel ="Wekly reports"/>
<s: checkbox nanme="nont hly" | abel ="Monthly revi ews"
val ue="true" disabl ed="true"
/>
<s:submt/>
</s:fornp
</ di v>
</ body>
</htm >

You can test the example by using this URL:

http://1 ocal host: 8080/ app05a/ CheckBox. acti on

Figure 5.3 shows the checkboxes.

Figure 5.3. Using check boxes

A checkbox Tag Example - Microsoft Internet ... ['Z][E|E|
File Edit Wiew Favorites Tools Help .ﬂ'

- address | @] hitp:f flocalhost: 5080/ app05afCheckBox. action v | i)

Subscription Type

O Daily news alert
OO0 Weelkly reports
Monthly reviews

I:El Dare %J Local intranet

The last checkbox is disabled and its value cannot be changed. Sometimes you may want to
display a disabled checkbox to show the user a default selection that cannot be changed.

Now, let's look at another great feature of the checkbox tag.

The checkbox tag has a fieldValue attribute that specifies the actual value that is sent to
the server when the containing form of a checked checkbox is submitted. If no fieldvValue
attribute is present, the value of the checkbox is either ""true' or "false." If it is present
and the checkbox was checked, the value of the fieldValue is sent. If the fieldValue
attribute is present and the checkbox is unchecked, no request parameter associated with
the checkbox will be sent.

This attribute can be used to send selected values of a series of checkboxes. For example,

the CheckBoxTest2Action class in Listing 5.7 has a getter that returns a list of
Magazine objects. You can use the checkbox tag and the fieldvalue attribute to
construct the same number of checkboxes as the number of magazines on the list, as
shown in the CheckBox2.jsp page in Listing 5.8. Each checkbox is assigned a magazine
code.

Listing 5.7. The CheckBoxTest2Action class

package app05a;

i mport com opensynphony. xwor k2. Acti onSupport ;
i mport java.util.Arraylist;

i mport java.util.List;

public class CheckBoxTest2Acti on extends Acti onSupport {
public List<Magazi ne> get Magazi neLi st () {
Li st <Magazi ne> magazi nes = new ArrayLi st <Magazi ne>();

magazi nes. add(new Magazi ne(" 034", "The Economist"));
magazi nes. add(new Magazi ne(" 122", "Business Wek"));
magazi nes. add(new Magazi ne("434", "Fortune"));

magazi nes. add(new Magazi ne(" 906", "Small Business"));

return magazi nes;

}

public void setMagazi nes(String[] codes) {
for (String code : codes) {
Systemout.println(code + " is selected");
}

}

cl ass Magazi ne {
private String code
private String name;
public Magazi ne(String code, String nane) {
thi s. code code
thi s. nane nane;

}
public String getCode() {
return code

}

public String getNane() ({
return nane;

}

Listing 5.8. The CheckBox2.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<titl e>CheckBox fieldValue Test</title>
</ head>
<body>
<s:fornp
<s:iterator val ue="nmgazi nelList">
<s: checkbox nanme="nagazi nes"
| abel =" % nane}"
fiel dval ue="%code}"/ >
</s:iterator>
<s:subnmit/>

</s:forne
</ body>
</htm >

The iterator tag will iterate over the magazine list and will be explained in Chapter 6,
"Generic Tags." The whole form will be rendered as

<form...>

<i nput type="checkbox" name="nagazi nes" val ue="034" .../>

<i nput type="hidden" nanme="__ checkbox_nmagazi nes" val ue="034" />
<i nput type="checkbox" nane="magazi nes" val ue="122" .../>

<i nput type="hidden" nane="__checkbox_magazi nes" val ue="122" />
<i nput type="checkbox" nanme="nmgazi nes" val ue="434" />

<i nput type="hi dden" name="__checkbox_magazi nes" val ue="434" />

<i nput type="checkbox" nane="nagazi nes" val ue="906" />

<i nput type="hi dden" name="__ checkbox nmagazi nes" val ue="906" />

</fornmp

All checkboxes have the same name (magazines) which means their values are linked to an
array or a collection. If a checkbox is checked, its value (magazine code) will be sent. If it is
not, its value will not be sent. As such, you'll know which magazines have been selected.
You can test this example by using this URL:

http://1 ocal host: 8080/ app05a/ CheckBox2. acti on

The checkboxes are shown in Figure 5.4. Note that there are four checkboxes
constructed since there are four magazines on the list.

Figure 5.4. Using the fieldVvalue attribute

2 CheckBox fieldValue Test - Microsoft Interne... |: i|r>__(|
File Edit Wew Favorites Tools Help &

: Address I@ http: fflocalhost: 8080/ app0Sa)CheckBoxz2, action V| GO

[] The Economist
[0 Business Week
[l Fortune

[l Zmall Business

I:El Done ‘-j Local intranet

Note

The checkboxlist tag renders multiple checkboxes too, but its layout is fixed. Using
checkbox tags, on the other hand, gives you more flexibility in laying out the rendered
elements.

The list, listKey, and listValue attributes

The list, listKey, and listValue attributes are important attributes for such tags as radio,
combobox, select, checkboxlist, doubleselect because they help retrieve options for the
tags.

A radio set, for example, needs options. Consider these HTML input tags that are rendered
as radio buttons shown in Figure 5.5.

Figure 5.5. Radio buttons

O atlanta © Chicago O Detroit

<i nput type="radi o" nane="city" value="I"/>Atlanta
<i nput type="radi 0" nane="city" val ue="2"/>Chi cago
<i nput type="radi 0" nane="city" value="3"/>Detroit

As you can see, the radio set has a set of values (1, 2, 3) and a set of labels (Atlanta,
Chicago, Detroit). The value/label pairs are as follows.

- Atl anta

1
2 - Chicago
3 - Detroit

Select elements also need options. This select element (shown in Figure 5.6) features the
same options as the radio set.

Figure 5.6. The city select element

Chicago
Detroit

<sel ect name="city">
<option value="I|">At| ant a</ opti on>
<option val ue="2">Chi cago</ opti on>
<option val ue="3">Detroit</option>
</ sel ect >

Note

In a select element, the value attribute is optional. If it is not present, the label will be sent
as the value when the corresponding option is selected. With radio buttons, the value
attribute is not required but when the value attribute is absent, "on" will be sent, and not
the label. Therefore, a radio button must always have the value attribute.

This section explains how you can use the list, listKey, and listValue attributes in the
radio, select, and other tags that require options. When you use these tags, you need to
have label/value pairs as the source of your options. Of the three attributes, the list
attribute is required and the other two are optional. You can assign a String, an array, a
java.util.Enumeration, a java.util.lterator, a java.util.Map, or a Collection to the list
attribute. The object can be placed in an action object, in the session object, or the
ServletContext object.

Note

If the object you dynamically assign to the list attribute has no options, you must return an
empty array/Collection/Map instead of null.

Assigning A String

You can assign a String representation of an array. For example, the following select tag is
assigned a string.

<s:select list="{"Atlanta', 'Chicago', 'Detroit'}"/>

This select tag will be rendered as

<sel ect >
<option val ue="Atl ant a">At| ant a</ opti on>
<opti on val ue="Chi cago" >Chi cago</ opti on>
<option val ue="Detroit">Detroit</option>
</ sel ect >

Note that each string element is used as both the value and the label.

Most of the time, you want to use values that are different from labels for your options. In
this case, the syntax is this:

#{'value-1': 'label-1", ' value-2':"label-2', ... "value-n':'label-n"}

For example, the following select tag:

<s:select list="#{"1":"Atlanta', '2':'Chicago', '3 :'Detroit'}"/>

is rendered as

<sel ect >
<option val ue="|">Atl ant a</ opti on>
<option val ue="2">Chi cago</ opti on>
<option val ue="3">Detroit</option>
</ sel ect >

Assigning a Map

You use a Map as the source for your options if the value of each option needs to be
different from the label. Using a Map is very straightforward. Put the values as the Map
keys and the labels as the Map values. For example, here is how to populate a Map called
cities with three cities:

Map<I nteger, String> cities = new HashMap<lnteger, String>();
cities.put(1, "Atlanta");

cities.put(2, "Chicago");
cities.put(3, "Detroit");

If cities is an action property, you can assign it to the list attribute. Like this:

<s:select list="cities"/>

Or, if cities is an application attribute, you use this code.

<s:select list="#application.cities"/>

Assigning A Collection or An Object Array

You use an array or a Collection of objects as the source for options. In this case, you need
to use the list, listKey, and listValue attributes. Assign the array or Collection to the list
attribute. Assign to listKey the object property that will supply the value of each option and
to listValue the object property that will supply the label of each option.

For example, assuming that the action object's getCities method return a List of City
objects with an id and a name properties, you would use the following to assign the List to
a select tag.

<s:select list="cities" |listKey="id" |istVal ue="name" />

You will see more examples in the sections to come.

The radio Tag

The radio tag renders a group of radio buttons. The number of radio buttons is the same as
the number of options you feed the tag's list attribute. Even though the radio tag will work
with only one option, you should use it to render multiple options from which the user can
select one. For a true/false value, use a checkbox instead of radio.

The radio tag adds three attributes listed in Table 5.12. * indicates a required attribute.

Table 5.12. radio tag attributes

Name | Data Default Description
Type Value

list* String An iterable source to populate from

listkey [String The property of the object in the list that will supply the
option values.

listValue|String The property of the object in the list that will supply the
option labels.

The following example uses two radio tags to get the user type and the income level on a
club membership form. The first tag gets its options from a hardcoded list and the second
tag gets its options from a Map.

The RadioTestAction class in Listing 5.9 is the action class for this example. Note that
the incomelLevels Map is a static variable that is populated inside a static block so that it's
only populated once for all instances of the action class.

Listing 5.9. The RadioTestAction class

package app05a;

i mport java.util. SortedMap;

i mport java.util.TreeMap;

i mport com opensynphony. xwor k2. Acti onSupport;

public class Radi oTest Acti on extends ActionSupport {
private int userType;
private int inconeLevel;
private static SortedMap<lnteger, String> inconelLevels;
static {
i ncomeLevel s = new TreeMap<l| nteger, String>();
i nconeLevel s. put (1, "0 - $10,000");
i ncomeLevel s. put (2, "$10,001 - $30, 000");
i nconelLevel s. put (3, "$30,001 - $50, 000");
i nconeLevel s. put (4, "Over $50,000");
}
public int getlnconeLevel () {
return i nconeLevel

public void setlnconeLevel (int inconeLevel) ({
this.incomeLevel = inconelLevel;
}

public int getUserType() {
return userType;
}

public void setUserType(int userType) {
this.user Type = userType;
}

public SortedMap<lnteger, String> getlnconelLevel s() {
return inconelLevel s;

A SortedMap is used instead of a Map to guarantee that the options are rendered in the
same order as the key. Using a Map does not provide the same guarantee.

The Radio.jsp page in Listing 5.10 shows the radio tags.

Listing 5.10. The Radio.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>radio Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 450px" >
<h3>Menber shi p For nx/ h3>

<s:fornp
<s:radi o nanme="user Type" | abel ="User Type"

list="#{"1:"Individual', '2' :'Oganization'}"
/>
<s:radi o name="i nconeLevel " | abel ="I ncone Level"
l'ist="inconeLevel s"
/>
<s:submt/>
</s:fornme
</ di v>
</ body>
</htm >

To run the test, use this URL:

http://1 ocal host: 8080/ app05a/ Radi 0. acti on

Figure 5.7 shows how the radio buttons are rendered.

Figure 5.7. Using the radio tag

2} radio Tag Example - Microsoft Internet Explorer :||E|

%]
»

. FEle Edit \iew Favorites Tools Help
. Address I@ http: fflocalhost: 8080) app0SaRadio, action V| =1 Go

Membership Form

User o i

Type: O Individual © Organization

Income O0 - $10,000 ©$10,001 - $30,000

Level; O $30,001 - £50,000 O OCOver $50,000
@ Dane ‘ﬂ Local intranet

Note that the first radio tag is rendered as two radio buttons, in accordance with the
number of hardcoded options. The second radio tag translates into four radio buttons
because it's linked to a Map with four elements.

The select Tag

The select tag renders a select element. Its attributes are given in Table 5.13.

Table 5.13. select tag attributes

Name Data Default Description
Type Value

emptyOption|boolean [false Indicates whether or not to insert an empty option
after the header.

headerKey |String The key for the first item in the list.
headerValue |String The value for the first item in the list.

list* String An iterable source to populate from

listKey String The property of the object in the list that will

supply the option values.

listValue String The property of the object in the list that will
supply the option labels.

multiple boolean [false Indicates whether or not multiple selection is
allowed
size integer The number of options to show

The headerKey and headerValue attributes can be used to insert an option. For instance,
the following select tag inserts a header.

<s:select name="city" label="City"
header Key="0" header Val ue="[Sel ect a city]"
list="#{"1":"Atlanta', "2':'Chicago', '3 :'Detroit'}"
/>

The following example is used to let the user select a country and a city using two select
elements. The first select element displays three countries (US, Canada, Mexico) from a

Map in the ServiletContext object. You normally put a selection of options in a
ServletContext if you intend to use the options from many different points in your

application. You use the ServletContextListener in Listing 5.11 to populate the Map.

Listing 5.11. The application listener

package app05a;

i mport java.util.HashMap;

i mport java.util.Map;

i mport javax.servlet. Servl et Cont ext;

i mport javax.servlet. Servl et Cont ext Event;

i mport javax.servlet. Servl et Cont ext Li stener;

public class ApplicationListener
i mpl ement's Ser vl et Cont ext Li st ener {
public void contextlnitialized(ServletContextEvent cse) {
Map<I nteger, String> countries =
new HashMap<Integer, String>();
countries.put(1, "US");
countries. put(2, "Canada");
countries. put (3, "Mexico");
Servl et Cont ext servl et Context = cse. get Servl et Context();
servl et Context.setAttribute("countries", countries);

public void contextDestroyed(Servl et Cont ext Event cse) {

}

The second select tag dynamically displays cities in the selected country. If the selected
country is US, the select element displays Atlanta, Chicago, and Detroit. If the selected
country is Canada, Vancouver, Toronto, and Montreal are displayed. Because the cities are
dynamic, the options are generated in the action class. Note that the selection is presented
in an array of City object. The City class has two properties, id and name. The action

class and the City class are shown in Listing 5.12.

Listing 5.12. The SelectTestAction and City classes

package app05a;
i mport com opensynphony. xwor k2. Act i onSupport ;

public class Sel ect Test Acti on extends ActionSupport {
private int city;
private int country;

public City[] getCities() {
City[] cities = null;
if (country == 1) {
cities = new Cty[3];

cities[0] = new City(1, "Atlanta");
cities[1] = new City(2, "Chicago");
cities[2] = new City(3, "Detroit");

} else if (country == 2) {
cities = new Cty[3];
cities[0] = new City(4, "Vancouver");

cities[1]
cities[2]

new City(5, "Toronto");
new City(6, "Mntreal");

} else if (country == 3) {
cities = new Cty[2];

cities[0] = new City(7, "Mexico City");
cities[1] = new City(8, "Tijuana");
} else {

cities = new City[O0];
}
return cities;
}
public int getCity() {
return city;
}

public void setCity(int city){
this.city = city;
}

public int getCountry() {
return country;
}

public void setCountry(int country) {
this.country = country;
}

}

class City {

private int id;

private String nane;

public Cty(int id, String nane) {
this.id = id;
thi s. nane = nane;

}

public int getld() {
return id;

}

public void setld(int id) {
this.id =id;

}

public String getName () {
return nane;

}

public void setNanme(String nane) {
this. nane = nane;
}

The JSP used for this example is given in Listing 5.13.

Listing 5.13. The Select.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>sel ect Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 300px" >
<h3>Sel ect Locati on</h3>
<s:fornp
<s:sel ect nanme="country" | abel ="Country" enptyQption="true"
i st="#application.countries"
onchange="this.formsubmt()"

/>
<s:sel ect nane="city" label="City"
list="cities" listKey="id" |istValue="nane"
/>
<s:submt/>
</s:formp
</ di v>
</ body>
</htnm >

The country select tag has its emptyOption attribute set to true to provide an empty
option and its list attribute set to the countries scoped variable in the application implicit
object. In addition, its onchange attribute is assigned a Javascript function that will submit
the containing form when the value of the select element changes. This way, when the user
selects a country, the form will be submitted and invokes the action object that prepares

the city options in the getCities method.

To run this test, use this URL:

http://1 ocal host: 8080/ app05a/ Sel ect. acti on

Figure 5.8 shows the city options when US is selected and Figure 5.9 shows what

cities the user can choose when the country is Canada.

Figure 5.8. The city options for US

File Edit Wiew Favaorites Tools Help ﬂ*’

: Address |@ http: fflocalhost: 3080/ app0SajSelect . ackion V| G0

Select Location

Country:
City:

Atlanta

Chicago
Detrait

@ Cione ‘ﬂ Local intranet

Figure 5.9. The city options for Canada

File Edit ‘Wiew Favaorites Tools Help ﬁf

: Address |@ http: fflocalhost: 8080/ app0SajSelect , ackion V| G0

Select Location

Country:
City

Yancouver

Toranto
kontreal

@ Done ﬂ Local intranet

Select Option Grouping with optgroup

You can group options in a select element by using the optgroup tag. Each option group
has its own source. The optgroup tag's attributes are given in Table 5.14.

Table 5.14. optgroup tag attributes

Name | Data Default Description
Type Value
list* String An iterable source to populate from
listkey [String The property of the object in the list that will supply the
option values.
listValue|String The property of the object in the list that will supply the
option labels.

For example, the OptGroupTestAction class in Listing 5.14 is an action class that has
three Map properties, usCities, canadaCities, and mexicoCities.

Listing 5.14. The OptGroupTestAction class

package

app05a;

i mport java.util.HashMap;
import java.util. Map;

i mport com opensynphony. xwor k2. Acti onSupport;
public class Opt G oupTestAction extends ActionSupport {

private int city;

private
private

private

st at

}

ic {

usCities. put (1,
usCGities. put (2,
usCities. put (3,

static Map<lnteger, String> usCities =
new HashMap<l nteger, String>();

static Map<lnteger, String> canadaCities
new HashMap<I nteger, String>();

static Map<lnteger, String> nexicoCities
new HashMap<l nteger, String>();

canadaCiti es. put (4,
canadaCiti es. put (5,
canadaCiti es. put (6,
mexi coCities. put (7,
nmexi coCi ties. put (8,

public int getCity() {

"Atl anta");

" Chi cago");
"Detroit");
"Vancouver");
"Toronto");
"Montreal ");
"Mexico City");
"Tijuana");

return city;

}
public void setGty(int city) {
this.city = city;

}
public Map<Integer, String> getUsCities() {
return usCities;

public Map<Integer, String> getCanadaCities() {
return canadaCities;

public Map<Integer, String> getMexicoCties() {
return nmexi coCities;
}

The OptGroup.jsp page in Listing 5.15 shows how to use the optgroup tag to group
options in the select element in this example.

Listing 5.15. The OptGroup.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>optgroup Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 300px" >

<h3>Sel ect City</h3>

<s:fornp

<s:select name="city" label="City" enptyOption="true"
list="usCities">

<s:optgroup | abel ="Canada" |ist="canadaCities"/>
<s:optgroup | abel ="Mexico" list="nexicoCties"/>

</ s:sel ect >
<s:submt/>
</s:fornp
</ di v>
</ body>
</htm >

The URL for testing this action is:

http://1 ocal host: 8080/ app05a/ Opt Gr oup. acti on

Figure 5.10 shows the select element with option groups.

Figure 5.10. Using optgroup

2} optgroup Tag Example - Microsoft Internet Ex...

File Edit Wiew Favaritkes Tools Help ﬂ'r

. Address |@ http: fflocalhost: 8080/ app0Sa)OpkGroup. ackion Vl =0

Select City

City: v

Atlanta
Chicago
Cretroit
Canada
ancouwer
Toronto
hMontreal
Maxico
hexico City
Tijuana

I@ Ciore ‘:j Local intranet

If you're curious, you can view the source and see that the select element is rendered as
these HTML tags.

<sel ect nanme="city" id="OptGoup_city">
<option val ue=""></opti on>
<option val ue="2">Chi cago</ opti on>
<option val ue="1">At| ant a</ opti on>
<option val ue="3">Detroit</option>

<opt group | abel =" Canada" >
<option val ue="4">Vancouver </ opti on>

<option val ue="6">Montreal </ opti on>
<option val ue="5">Tor ont o</ opti on>

</ opt gr oup>

<opt group | abel =" Mexi co" >
<option val ue="8">Ti j uana</ opti on>
<option val ue="7">Mexi co City</option>

</ opt gr oup>

</ sel ect >

The checkboxlist Tag

The checkboxlist tag is rendered as a group of check boxes. Its attributes are listed in

Table 5.15.

Table 5.

15. checkboxlist tag attribute

Name Data Default
Type Value

Description

list* String

An iterable source to populate from

listkey [String

The property of the object in the list that will supply the
option values.

listValue String

The property of the object in the list that will supply the
option labels.

A checkboxlist tag is mapped to an array of strings or an array of primitives. If no
checkbox on the list is selected, the corresponding property will be assigned an empty

array, not null.

The following example shows how you can use the checkboxlist tag. The property

underlying the checkboxlist is an
Interest objects.

Listing 5.16 shows the Check
example, and the Interest class.

array of integers. The options come from a List of

BoxListTestAction class, the action class for this

Listing 5.16. The CheckBoxListTestAction and Interest classes

package appO05a;
i mport java.util.Arraylist;
i mport java.util.List;

i mport com opensynphony. xwor k2. Act i onSupport;

public class CheckBoxLi st Test Acti on extends ActionSupport {
private int[] interests;
private static List<lInterest> interestOptions =
new Arraylist<lnterest>();
static {
i nterest Options. add(new Interest(1, "Autonotive"));
i nterest Options.add(new Interest(2, "Ganmes"));
i nterest Options. add(new Interest(3, "Sports"));

public int[] getlnterests() {
return interests;
}

public void setlnterests(int[] interests) {
this.interests = interests;

public List<lnterest> getlnterestOptions() {
return interestOptions;
}

}

class Interest {
private int id;
private String description;
public Interest(int id, String description) {
this.id =id;
this.description = description;

}

/'l getters and setters not shown

Listing 5.17 shows the CheckBoxList.jsp page that uses a checkboxlist tag.

Listing 5.17. The CheckBoxList.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<titl e>checkboxlist Tag Exanmple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 450px" >
<h3>Sel ect | nterests</h3>

<s:fornp
<s: checkboxli st name="interests" |abel ="Interests"
list="interestOptions"
listKey="id" |istValue="description"
/>
<s:submt/>
</s:forne
</ di v>
</ body>
</htm >

You can run the action by directing your browser to this URL:

http://1 ocal host: 8080/ app05a/ CheckBoxLi st. acti on

The result is shown in Figure 5.11.

Figure 5.11. Using checkboxlist

2 checkboxlist Tag Example - Microsoft Internet Explorer |._ 'E|E|
File Edit Miew Faworites Tools Help it’
. Address |SE| http:/flocalhost: 5080, app0SaCheckBoxList . ackion V| = =

Select Interests

Interests: [Automotive Games Sports

I@ Cione ‘ﬂ Local intranet

The combobox Tag

The combobox tag renders as a text input field and a select element. Its attributes are

listed in Table 5.16.

Table 5.16. combobox tag attribute

Name Data Default Description
Type Value

emptyOption|boolean [false Indicates if an empty option should be inserted.
headerKey |integer The key for headerValue, should be -1.
headerValue |String Text that will be added as a select option but is not

intended to be selected

list* String An iterable source to populate from

listKey String The property of the object in the list that will supply

Table 5.16. combobox tag attribute

Name Data Default Description
Type Value

the option values.

listValue String The property of the object in the list that will supply
the option labels.

maxlength |integer The HTML maxlength attribute.
readonly boolean [false Indicates if the rendered element is read only.
size integer The size of the rendered element.

Unlike the select tag, the options for a combo box normally do not need keys. Also, the
label of the selected option, and not the value, is sent when the containing form is
submitted.

As an example, the ComboBoxTestAction class in Listing 5.18 is an action class that
provides a property (make) linked to the combobox tag on the JSP in Listing 5.19.

Listing 5.18. The ComboBoxTestAction class

package app05a;

i mport com opensynphony. xwor k2. Acti onSupport;

public class ConmboBoxTestAction extends ActionSupport {
private String meke;
/1l getter and setter not shown

Listing 5.19. The ComboBox.jsp page

<U@taglib prefix="s" uri="/struts-tags" %
<ht nl >
<head>
<titl e>conbobox Tag Exanple</title>
<style type="text/css">@nport url(css/main.css);</style>
<style type="text/css">
td {
vertical -align:top;

</styl e>
</ head>

<body>
<div id="global" style="w dt h: 300px" >
<h3>Sel ect Car Make</ h3>
<s:forne
<s: conmbobox nane="nake" | abel =" Car Make" size="24"
header Key="-1" header Val ue="Sel ect a nake"

list="{ 'Ford', 'Pontiac', 'Toyota'}"
/>
<s:submt/>
</s:fornp
</ di v>
</ body>
</htnml >

Use this URL to test the action:

http://1ocal host: 8080/ app05a/ ConboBox. acti on

The result is shown in Figure 5.12.

Figure 5.12. Using combobox

‘A combobox Tag Example - Microsoft Internet Expl... |:||E||E|

w

File Edit |\Miew Favorites Tools Help F
- Address |@ https flocalbost: 3050/ app0SalComboBox, ackion V’| Go

Select Car Make

Car Make: | |

| Selecta make V|

@ Done ‘j Local intranet

The updownselect Tag

The updownselect tag functions like a checkboxlist, allowing you to select multiple
options from a list of options. An updownselect tag is rendered as a select element with its
multiple attribute set to multiple and buttons to select all options and reorder options.

(See Figure 5.13).

Figure 5.13. Using updownselect

3 updownselect Tag Example - Microsoft Internet ..

3

B

.l*r
: Address |5§| http: fflocalhosk: 80807 app0SajUpDownSelsct , action V| Go

File Edit Wiew Favorites Tools Help

Favorite colors

Green
Fed

“ellow
Colors:

=
L]

Subimit

I@ Done, but with errors o ‘-j Local intranet

Table 5.17 shows the list of attributes of updownselect.

Table 5.17. updownselect tag attribute

Name Data Default Description
Type Value

allowMoveDown boolean [true Indicates whether the move down button will be
displayed.

allowMoveUp |boolean itrue Indicates whether the move up button will be
displayed.

allowSelectAll boolean [true Indicates whether the select all button will be
displayed.

emptyOption boolean [false Indicates whether an empty (--) option should be
inserted after the header option.

headerKey String The key for the first item on the list.

headerValue String The value for the first item on the list.

list* String Iterable source to populate from.

listkKey String The property of the object in the list that will
supply the option values.

listValue String The property of the object in the list that will
supply the option labels.

moveDownlabel String |V Text to display on the move down button.

moveUpLabel |String A Text to display on the move up button.

multiple boolean (false Indicates if a multiple select should be created.

selectAllLabel

String

Text to display on the select all button.

Table 5.17. updownselect tag attribute

Name Data Default Description
Type Value

size Integer The number of options to show.

Note

When the form containing the updownselect tag fails to validate, the previously selected
value(s) of the updownselect tag is not retained.

The following example shows how to use updownselect to select multiple colors. Listing
5.20 shows an action class (UpDownSelectTestAction) for this example and Listing
5.21 the JSP that uses the tag.

Listing 5.20. The UpDownSelectTestAction class

package app05a;

i mport com opensynphony. xwor k2. Acti onSupport;

public class UpDownSel ect Test Acti on extends ActionSupport {
private int[] colors;
/1 getter and setter not shown

Listing 5.21. The UpDownSelect.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<ht ml >
<head>
<titl e>updownsel ect Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
<style type="text/css">
sel ect {
wi dt h: 100px;

</styl e>
</ head>
<body>
<div id="global" style="w dth: 250px" >
<h3>Favorite col ors</h3>
<s:fornp
<s: updownsel ect name="col ors" | abel =" Col ors" size="5"
list="#{"1":"Geen', '2'":'"Red", "3 :"Yellow}"
/>
<s:subnmit/>
</s:fornmp
</ div>

</ body>
</htm >

Use this URL to test the example:

http://1 ocal host: 8080/ app05a/ UpDownSel ect . acti on

The rendered elements are shown in Figure 5.13.

The optiontransferselect Tag

The optiontransferselect tag is rendered as two select elements. It includes Javascript
functions for transferring options between the two select elements.

Table 5.18 shows the attributes of optiontransferselect.

Table 5.18. optiontransferselect tag attributes

Name Data Default Description
Type Value
addAllToLeftLabel String The label for the Add All To Left button
addAllToLeftOnclick String The Javascript function to invoke when the

Add All To Left button is clicked.

addAllToRightLabel String The label for the Add All To Right button

addAllToRightOnclick [String The Javascript function to invoke when the
Add All To Right button is clicked.

addTolLeftLabel String The label for the Add To Left button.

addToLeftOnclick String The Javascript function to invoke when the
Add To Left button is clicked.

addToRightLabel String The label for the Add To Right button.

addToRightOnclick String The Javascript function to invoke when the

Table 5.18. optiontransferselect tag attributes

Name Data Default Description
Type Value

Add To Right button is clicked.

allowAddAllToLeft boolean |true Indicates whether or not to enable the Add
All To Left button.

allowAddAllToRight boolean [true Indicates whether or not to enable the Add
All To Right button.

allowAddToleft boolean |true Indicates whether or not to enable the Add
To Left button.

allowAddToRight boolean |true Indicates whether or not to enable the Add
To Right button.

allowSelectAll boolean |true Indicates whether or not to enable the
Select All button.

allowUpDownOnLeft |boolean |true Indicates whether or not to enable moving
options up and down on the left select
element.

allowUpDownOnRight |boolean true Indicates whether or not to enable moving
options up and down on the right select
element.

buttonCssClass String The CSS class for the buttons.

buttonCssStyle String The CSS style for the buttons.

doubleCssClass String The CSS class for the second list.

doubleCssStyle String The CSS style for the second list.

Table 5.18. optiontransferselect tag attributes

Name Data Default Description
Type Value

doubledDisabled boolean |false Indicates if the second list should be
disabled.

doubleEmptyOption boolean [false Indicates if an empty option should be
inserted to the second list.

doubleHeaderKey String The header key for the second list.

doubleHeaderValue String The header value for the second list.

doubleld String The identifier for the second list.

doubleList* String The iterable source to populate the second
list.

doubleListKey String The property of the object in the second
list that will supply the option values.

doublelistValue String The property of the object in the second
list that will supply the option labels.

doubleMultiple boolean |false Indicates if the second list should allow
multiple selection.

doubleName* String The name for the second component.

doubleSize integer The size attribute for the second list.

emptyOption boolean [false Indicates if an empty option should be
inserted to the first list.

formName String The name of the form containing this

component.

Table 5.18. optiontransferselect tag attributes

Name Data Default Description
Type Value
headerKey String The header key for the first list.
headerValue String The header value for the first list.
leftDownLabel String The label for the left Down button.
leftTitle String The title for the left selection.
leftUpLabel String The label for the left Up button.
list* String The iterable source to populate the first
list..
listKey String The property of the object in the first list
that will supply the option values.
listValue String The property of the object in the first list
that will supply the option labels.
multiple boolean Indicates if multiple selection is allowed for
the first select element.
rightDownLabel String The label for the right Down button.
rightTitle String The title for the selection on the right.
rightUpLabel String The label for the right Up button.
selectAllLabel String The label for the Select All button.
selectAllOnclick String The Javascript function to invoke when the
Select All button is clicked.
size integer The number of elements to show in the

Table 5.18. optiontransferselect tag attributes

Name Data Default Description
Type Value

first selection.

upDownOnLeftOnclick [String The Javascript function that will be invoked
when the left Up/Down button is clicked.

upDownOnRightOnclick|String The Javascript function that will be invoked
when the right Up/Down button is clicked.

Note

Only selected (highlighted) options are sent to the server. Simply transferring an option to
the right select element does not make the option selected.

For example, the OptionTransferSelectTestAction class in Listing 5.22 is an action
class with a selectedLanguages property that is mapped to an optiontransferselect tag.

The tag is used in the OptionTransferSelect.jsp page in Listing 5.23.

Listing 5.22. The OptionTransferSelectTestAction

package app05a;
i mport com opensynphony. xwor k2. Act i onSupport ;

public class OptionTransferSel ect Test Acti on extends ActionSupport {
private String[] sel ectedLanguages;
public String[] getSel ectedLanguages() {
return sel ect edLanguages;
}

public void set Sel ect edLanguages(String[] sel ectedLanguages) {
for (String | anguage : sel ect edLanguages) {
System out . printl n("Language:" + |anguage);
}

thi s. sel ect edLanguages = sel ect edLanguages;

Listing 5.23. The OptionTransferSelect.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>optiontransfersel ect Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
sel ect {
wi dt h: 170px;
}

</styl e>

</ head>

<body>

<div id="global" style="w dt h: 550px" >

<s:fornp
<s:optiontransfersel ect | abel ="Sel ect | anguages"
nane="al | Languages"
leftTitle="All | anguages”
rightTitl e="Sel ected | anguages"”
list="{"French', 'Spanish', 'German',
"Dutch', 'Mandarin', 'Cantonese'}"

mul tiple="true"
header Key="header Key"
header Val ue="--- Pl ease Select ---
size="12"

enpt yOpti on="true"

doubl eLi st="{"English'}"
doubl eNane="sel ect edLanguages"
doubl eHeader Key="doubl eHeader Key"
doubl eMul ti pl e="true"
doubl eSi ze="5"
/>
<s:submt/>
</s:fornp
</ di v>
</ body>
</htm >

To test this example, direct your browser to this URL:

http://1 ocal host: 8080/ app05a/ Opti onTr ansf er Sel ect. acti on

The rendered elements are shown in Figure 5.14.

Figure 5.14. Using optiontransferselect

3 optiontransferselect Tag Example - Microsoft Internet Explorer = (B[]
. Fle Edt Wew Favorites Jooks Help i
- Adress |] hitp: flocalbost 8080 app0Sa/OptionTransferSelect action > 3

&ll languages

— Flease Select— E]
French Selected languages
gpﬂl“ll sh |English
Erman
Select Dutch i
. MWandarin
languUAgas: Cantonese e
@'Dme %J Lecal intranet

The doubleselect Tag

The doubleselect tag renders two select elements that are linked together. Its attributes
are listed in Table 5.19.

Table 5.19. optiontransferselect attributes

Name Data Default Description
Type Value
doubleCssClass String The CSS class for the second select element.
doubleCssStyle String The CSS style for the second select element.
doubleDisabled booelan [false Indicates if the second select element should
be disabled.

Table 5.19. optiontransferselect attributes

Name Data Default Description
Type Value

doubleEmptyOption false Indicates whether an empty option should be
inserted to the second select element.

doubleHeaderKey |[String The header key for the second select element.

doubleHeaderValue |String The header value for the second select
element.

doubleld String The identifier for the second select element.

doubleList* String The iterable object for populating the second
select element.

doubleListKey String The property of the object in the second list
that will supply the option labels.

doubleListValue String The property of the object in the second list
that will supply the option labels.

doubleMultiple boolean [false Indicates whether the second select element
should allow multiple selection.

doubleName* String The name for the second selection.

doubleSize interger The number of options to be shown in the
second select element.

doubleValue String The value for the second select element.

emptyOption boolean [false Indicates whether or not an empty options
should be inserted to the first select element.

formName String The name of the containing form.

Table 5.19. optiontransferselect attributes

Name Data Default Description
Type Value
headerKey String The header key for the first select element.
headerValue The header value for the first select element.
list The iterable object that will populate the first

select element.

listKey String The property of the object in the first list that
will supply the option values.

listValue String The property of the object in the first list that
will supply the option labels.

multiple boolean False Indicates whether or not the first element
should allow multiple selection.

size Integer The number of options to be displayed in the
first element.

As an example, the DoubleSelectTestAction class in Listing 5.24 is an action class
with two properties linked to the doubleselect tag in the DoubleSelect.jsp page in

Listing 5.25.

Listing 5.24. The DoubleSelectTestAction class

package app05a;

i mport com opensynphony. xwor k2. Acti onSupport;

public cl ass Doubl eSel ect Test Acti on extends ActionSupport {
private String country;
private String city;
/'l getters and setters not shown

Listing 5.25. The DoubleSelect.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >

<head>

<titl e>doubl esel ect Tag Exanple</title>

<style type="text/css">@nport url (css/main.css);</style>
<styl e>

sel ect {
wi dt h: 170px;

}

</styl e>

</ head>

<body>

<div id="global" style="w dth: 300px" >
<s:fornp

<s: doubl esel ect | abel =" Sel ect Location"
name="country"
list="{"US , 'Canada', 'Mexico'}"
doubl eNane="ci ty"

doubl eLi st="top == 'US" ?
{"Atlanta', 'Chicago', 'Detroit'}
(top == 'Canada' ?
{' Vancouver', 'Toronto', 'Montreal'}

{"Mexico City', "Tijuana'})"
/>

<s:submt/>
</s:fornme
</ di v>
</ body>
</htm >

To test the example, use this URL:

http://1 ocal host: 8080/ app05a/ Doubl eSel ect . acti on

Figure 5.15 shows the rendered doubleselect tag.

Figure 5.15. Using doubleselect

2 doubleselect Tag Example - Microsoft Internet E... |Z||E|r)__(|
'lr

File Edit Wew Favorites Tools Help]

: Address I@ http: filocalhost: 5080) app05Sa/DoubleSelect, action V| G0

| kMexico V|

Select
Location:

| Tijuana

I@ Dane “-_4 Local intranet

Themes

Each Ul tag in the Struts Tag Library is rendered to an HTML element or HTML elements.
Struts lets you choose how the rendering should happen. For instance, by default the form
tag is rendered as an HTML form element and a table element. Therefore,

<s:forne</s:fornp

is translated into

<formid="..." name="...
nmet hod="post " >
<t abl e cl ass="wwor nirabl e" >

onsubm t="return true;" action="...

</t abl e>
</fornp

The table element is great for formatting because every input tag, such as textfield,
checkbox, and submit, will be rendered as an input element contained within a tr element
and td elements, accompanied by a label.

For example, this textfield tag

<s:textfield | abel ="My Label ">

will be rendered as

<tr>
<td cl ass="tdLabel ">
<l abel for="..."
</td>
<t d>
<i nput type="text" name="..." id="..."/>
</td>
</[tr>

cl ass="1abel ">My Label : </| abel >

Since most forms are formatted in a table, this kind of rendering helps.

However, sometimes you do not want your textfield tag to be rendered as an input element
in tr and td's and, instead, want it to be translated as a lone <input> because you want to
apply your own formatting. Can you do this?

You can because each Ul tag comes with several rendering templates you can choose. One
template renders <s:form> as a form and a table elements, but another translates the
same form tag into a form element, without a <table>. These templates are written in
FreeMarker, but you don't have to know FreeMarker to use these templates.

Similar templates are packaged together into a theme. A theme therefore is a collection of
templates that produce the same look and feels for all Ul tags. There are currently four
themes available:

e simple. Templates in the simple theme translate Ul tags into their simplest HTML
equivalents and will ignore the label attribute. For example, using this theme a
<s:form=> is rendered as a form element, without a table element. A textfield tag
translates into an input element without bells and whistles.

e Xxhtml. The xhtml theme is the default theme. Templates in this collection provides
automatic formatting using a layout table. That's why a <s:form> is rendered as a
<form=> and a <table>.

e css_xhtml. Templates in this theme are similar to those in the xhtml theme but
rewritten to use CSS for layout.

e ajax. This theme contains templates based on xhtml templates but provides
advanced AJAX features. AJAX programming will be discussed in Chapter 27, "AJAX".

All the templates from the four themes are included in the struts-core-VERSION.jar file,
under the template directory.

Now that you know how Ul tags are rendered, it's time to learn how to choose a theme for
your Ul tags.

As mentioned eatrlier, if you don't specify a theme, the templates in the xhtml theme will be
used. To easiest way to change a theme for a Ul tag is by using the theme attribute of that
tag. For example, the following textfield tag uses the simple theme:

<s:textfield thenme="sinple" name="userld"/>

If the theme attribute is not present in a form input Ul tag, the form's theme will be used.
For instance, the following tags all use the css_xhtml theme since the containing form uses
that theme, except for the last checkbox tag that uses the simple theme.

<s:formthene="css_xhtn ">

<s:checkbox thenme="sinple" nane="daily" |abel="Daily news alert"/>

<s: checkbox nanme="weekl y" | abel ="Wekly reports"/>

<s: checkbox thene="sinpl e" nane="nont hly" | abel ="Monthly revi ens"
val ue="true" disabl ed="true"

/>
<s:submt/>
</s:fornp

In addition to using the theme attribute, there are two other ways to select a theme:

1. By adding an attribute named theme to the page, request, session, or application
JSP implicit objects.

2. By assigning a theme to the struts.ui.theme property in the struts.properties file,
discussed in Appendix A, "Struts Configuration.”

Summary

Struts comes with a tag library that include Ul and non-Ul tags. Some of the Ul tags are
used for entering form values and are referred to as the form tags. In this chapter you have
learned all the tags in the form tags.

Chapter 6. Generic Tags

As explained in Chapter 5, "Form Tags," Struts comes bundled with a tag library that
contains Ul and non-Ul tags. In this chapter we look at the non-Ul tags, which are also
known as generic tags.

There two types of generic tags, data tag and control tag. The following are the data tags:

a
action
bean
date
debug
i18n
include
param
push
set

text

url
property

Note

The i18n and text tags are related to internationalization and discussed in Chapter 9,
"Message Handling." The debug tag is used for debugging and explained in Chapter
16, "Debugging and Profiling."

The following are the control tags:

if

elself

else
append
generator
iterator
merge
sort
subset

Each of the generic tags is discussed in the following sections. The accompanying samples
can be found in the app06a application.

The property Tag

You use the property tag to print an action property. Its attributes are listed in Table
6.1. All attributes are optional.

Table 6.1. property tag attributes

Name | Type Default Description
default|String The default value if value is null
escape boolean true Whether HTML special characters are escaped

value |String |<top of stack>|The value to be displayed

For instance, this property tag prints the value of the customerld action property:

<s:property val ue="custonerld"/>

The following prints the value of the session attribute userName.

<s:property val ue="#sessi on. user Nane"/ >

If the value attribute is not present, the value of the object at the top of the Value Stack
will be printed. By default, the property tag escapes HTML special characters in Table
6.2 before printing a value.

Table 6.2. Escaped characters

Character | Escaped Characters
" "
& &
< <
> >

Note that in many cases, the JSP Expression Language provides shorter syntax. For
example, the following EL expression prints the customerld action property.

${ cust oner | d}

The Property action in app0O6a demonstrates the use of the property tag. The action is

associated with the PropertyTestAction class (in Listing 6.1) that has a property
named temperature.

Listing 6.1. The PropertyTestAction class

package app06a;

i mport com opensynphony. xwor k2. Acti onSupport ;

public class PropertyTestActi on extends ActionSupport {
private float tenperature = 100. 05F;
/1 getter and setter not shown

The Property.jsp page in Listing 6.2 prints the value of the temperature property and
the value of the degreeSymbol application attribute. If the degreeSymbol attribute is not
found, the default °F will be used.

Listing 6.2. The Property.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>property Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<di v id="gl obal" style="wi dth: 250px" >
Tenperat ure: <s:property val ue="tenperature"/>
<% - Default to Fahrenheit--%
<s:property val ue="#application. degreeSynbol "
escape="f al se"
def aul t =" ° F"
/>
</ di v>
</ body>
</htm >

Test this example by directing your browser to this URL:

http://1 ocal host: 8080/ app06a/ Property. action

Figure 6.1 shows the result.

Figure 6.1. Using the property tag

‘2 property Tag Example - Microsoft Internet Ex... |;||E|[z|
e

File Edit ‘ew Favarites Tools Help i

: Address |$E:| http: fflocalbost: 3080 app06a/Property, action V| Go

Temperature:100.05 °F

@ Cane \ﬂ Local intranet

The a Tag

The a tag renders an HTML anchor. It can accept all attributes that the a HTML element can.
For example, this a tag creates an anchor that points to www.example.com.

<s:a href="http://ww. exanpl e.coni>C i ck Here</s:a>

This tag is of not much use, however the a tag in the AJAX tag library, discussed in Chapter
27, "AJAX," is very powerful.

The action Tag

The action tag is used to execute an action and the result for that action. It also adds the
action to the Value Stack's context map. Its attributes are shown in Table 6.3.

Table 6.3. action tag attributes

Name Type Default Description

executeResult boolean|false Indicates whether the action result
should be executed/rendered.

flush boolean|true Indicates whether the writer should
be flushed at the end of the action

Table 6.3. action tag attributes

Name Type Default Description
component tag.
ignoreContextParams boolean false Whether request parameters are to
be included when the action is
invoked.
name* String The name of the action to be
invoked, without the .action suffix.
namespace String the namespace The namespace of the action to be
from where the tag|invoked.
is used
var String The name to be used to reference

the action added to the context map.

For example, the following action tag causes the MyAction action to be executed. The
action object will also be accessible through the obj variable in the Value Stack's context

map.

<s:action var="obj"

nane="M/Acti on" executeResult="fal se"/>

The param Tag

The param tag is used to pass a parameter to the containing tag. Its attributes are listed in

Table 6.4.

Table 6.4. param tag attributes
Name|Type Default Description
name (String The name of the parameter to be passed to the containing tag.
value |String The value of the parameter to be passed to the containing tag.

The value attribute is always evaluated even if it is written without the 26{ and }. For
example, the value of the following param tag is the userName action property:

<s: par am nane="user Nane" val ue="user Nane"/ >

It is the same as

<s: param nane="user Nane" val ue="9% user Nane}"/ >

To send a String literal, enclose it with single quotes. For example, the value of this param
tag is naomi.

<s: param nane="user Nane" val ue="'naom"'"/>

The value attribute can also be written as text between the start and the end tags.
Therefore, instead of writing

<s: param nanme="..." value="..."/>
you can write
<s: param nanme="...">[val ue] </ s: parane

The second form allows you to pass an EL expression. For example, the following passes the
current host to the host parameter:

<s: param nanme="host " >${ header . host } </ s: par an>

This will not work:

<s: param nane="host" val ue="${header. host}"/>

The bean Tag
The bean tag creates a JavaBean and stores it in the Value Stack’'s context map. This tag is

similar in functionality to the JSP useBean action element. The attributes of the bean tag
are given in Table 6.5.

Table 6.5. bean tag attributes

Name | Type |Default Description

name*|String The fully qualified class name of the JavaBean to be created.

var String The name used to reference the value pushed into the Value
Stack's context map.

In the following example, the DegreeConverter class in Listing 6.3 provides methods to

convert Celcius to Fahrenheit and vice versa. The Bean.jsp page in Listing 6.4 uses the
bean tag to instantiate the class.

Listing 6.3. The DegreeConverter class

package app06a;
public class DegreeConverter {
private float celcius;
private float fahrenheit;
public float getCelcius() {
return (fahrenheit - 32)*5/09;
}

public void setCelcius(float celcius) {
this.celcius = cel cius;

}

public float getFahrenheit() {
return celcius * 9/ 5 + 32;

}

public void setFahrenheit(float fahrenheit) {
this.fahrenheit = fahrenheit;
}

Listing 6.4. The Bean.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>bean Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 250px" >
<s: bean nane="app0O6a. DegreeConverter" id="converter">
<s: param nane="f ahrenhei t" val ue="212"/>
</ s: bean>
212° F=<s: property val ue="#converter. cel ci us"/ >° C
</ di v>
</ body>
</htm >

To test this example, direct your browser to this URL:

http://1 ocal host: 8080/ appO6a/ Bean. acti on

Figure 6.2 shows the result.

Figure 6.2. Using the bean tag

2 bean Tag Example - Microsoft Internet Explorer |Z||E|[E|
File Edit ‘ew Favorites Tools Help #

. Address |@ http: jflocalhost: 8080/ app06a/Bean. ackion V| =0

212°F=100.0°C

@ Cone “-_J Local inkranet

The date Tag

The date tag formats a Java Date object. Its attributes are given in Table 6.6.

Table 6.6. date tag attributes

Name | Type |Default Description
format String The date pattern.
name* String The date value to format.

nice |booleanifalse |Whether to apply nice formatting.

var String The name used to reference the value pushed to the value
stack.

The format attribute conforms to the date and time patterns defined for the

java.text.SimpleDateFormat class. For example, the Date.jsp page in Listing 6.5 uses
date tags to format dates.

Listing 6.5. The Date.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title>date Tag Exanple</title>

<style type="text/css">@nport url (css/main.css);</style>

</ head>

<body>

<div id="global" style="w dt h: 350px" >
<s: bean nane="java.util.Date" var="today"/>
Today (original format): <s:property val ue="#today"/>
<s: date nane="#today" var="formatl" format="M dd/yyyy"/>

Today (mi dd/yyyy): <s:property val ue="#fornmatl"/>

<s: date nane="#today" var="format2" format="MW d, yyyy"/>

Today (MW d, yyyy): <s:property value="#format2"/>

<s: date nane="#today" var="format3" format="MW d, yyyy hh: mi/>

Today (MW d, yyyy hh:mm: <s:property val ue="#format 3"/ >

</ di v>
</ body>
</htm >

To test the example, direct your browse here:

http://1 ocal host: 8080/ appO6a/ Dat e. acti on

The result is shown in Figure 6.3.

Figure 6.3. Using the date tag

<3 date Tag Example - Microsoft Internet Explorer |Z||E|E|

: FEle Edit Wiew Favorites Tools Help
: Address !@j http: fflocalbost: 3080/ app0&a/Date, action w | G0

original format): 82407

rmrfdd Syl 8/24f2007

MMM d, yvyyy): Sug 24, 2007

MMM d, vyyy hbemm): Aug 24, 2007 038:19

Today
Today
Today
Today

e e

I@ Cione *:J Local intranet

The include Tag

This tag includes the output of a servlet or a JSP. It has one attribute, value, that is
described in Table 6.7.

Table 6.7. include tag attrbute
Name | Type |Default Description
value*|String The servlet/JSP whose output is to be included.
The set Tag

The set tag creates a key/value pair in one of the following map:

the Value Stack's context map
the session map

the application map

the request map

the page map

The attributes of the set tag are given in Table 6.8.

Table 6.8. set tag attributes

Name|Type Default Description
name (String The key of the attribute to be created
value |String The object to be referenced by the key.

scope (String|default The scope of the target variable. The value can be application,
session, request, page, or default.

The following example, based on the SetTestAction class in Listing 6.6, shows the
benefit of using set.

Listing 6.6. The SetTestAction class

package app06a;

i nport java.util.Map;

i mport org.apache. struts2. Servl et Acti onCont ext ;
i mport com opensynphony. xwor k2. Act i onSupport;

public class SetTestAction extends ActionSupport {
public String execute() {
Map sessionMap = Servl et Acti onCont ext .
get Cont ext (). get Sessi on();
Cust onmer custoner = new Custoner();
cust oner. set Cont act ("John Conroy");
customner. set Emai | ("i nf o@xanpl e. cont') ;
sessi onMap. put ("custoner", customner);
return SUCCESS;

}

cl ass Customer {
private String contact;
private String email;
/'l getters and setters not shown

The SetTestAction class's execute method inserts a Customer object to the Session
object. You could display the contact and email properties of the Customer object using
these property tags:

<s:property val ue="#sessi on. cust onmer.contact"/>
<s:property val ue="#sessi on. custoner.ennil"/>

However, as you can see from the Set.jsp page in Listing 6.7, you could also push the
variable customer to represents the Customer object in the Session map.

<s:set nane="custoner" val ue="#session. custoner"/>

You can then refer to the Customer object simply by using these property tags.

<s:property val ue="#cust oner. contact"/>
<s:property val ue="#custoner.emil"/>

Listing 6.7. The Set.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title>set Tag Exanple</title>

<style type="text/css">@nport url (css/main.css);</style>

</ head>

<body>

<di v id="gl obal" style="wi dth: 250px" >
<h3>Cust oner Detail s</h3>
<s:set name="customer" val ue="#session.custoner"/>
Contact: <s:property val ue="#custoner.contact"/>

Enmail: <s:property val ue="#custoner.emil"/>

</ di v>

</ body>

</htm >

Test this example by directing your browser to this URL:

http://1 ocal host: 8080/ app06a/ Set . acti on

The result is shown in Figure 6.4.

Figure 6.4. Using the set tag

2 set Tag Example - Microsoft Internet Ex... |Z||E|[z|

File Edit Wiew Favarites Tools Help -'ﬂr

. Address ISE[http: fflocalhost: 3080/ app06a)Set, ackion v| &0

Customer Details

Contact: John Conroy
Email: info@example.com

I@ Dare %J Local intranet

The push Tag

The push tag is similar to set. The difference is push pushes an object to the Value Stack,
not the context map. Another unique characteristic of push is that the start tag pushes the

object and the end tag pops it. Therefore, if you want to take advantage of push, you need
to do everything within the start and end tags.

The push tag only has one attribute, value, described in Table 6.9.

Table 6.9. push tag attribute
Name | Type |Default Description

value*|String The value to be pushed to the value stack.

For example, the PushTestAction class in LiSting 6.8 has an execute method that
places an Employee object in the HttpSession object.

Listing 6.8. The PushTestAction class

package app06a;

i nport java.util.Map;

i mport org.apache. struts2.interceptor. Sessi onAwar e;
i mport com opensynphony. xwor k2. Acti onSupport;
public class PushTest Acti on extends ActionSupport

i npl emrents Sessi onAwar e {

private Map sessi onMap;

public void set Session(Map sessi onMap) {
this.sessionMap = sessi onhap;

public String execute() {
Enpl oyee enpl oyee = new Enpl oyee();
enpl oyee. set1d(1);
enpl oyee. set Fi rst Name("Karl");
enpl oyee. set Last Nane(" Popper");
sessi onMap. put ("enpl oyee", enpl oyee);
return SUCCESS,;

}

cl ass Enpl oyee {
private int id;
private String firstNane;
private String |astNaneg;
/'l getters and setters not shown

The Push.jsp page in Listing 6.9 uses a push tag to push an Employee object to the
Value Stack.

Listing 6.9. The Push.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>push Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 250px" >
<h3>Enpl oyee Det ail s</ h3>
<s: push val ue="#sessi on. enpl oyee" >
Enpl oyee 1d: <s:property value="id"/>

First Nane: <s:property value="firstNane"/>

Last Nane: <s:property val ue="| ast Nane"/>
</ s: push>
</ div>
</ body>
</htm >

To test this action, direct your browser to this URL:

http://1 ocal host: 8080/ app06a/ Push. acti on

Figure 6.5 shows the result.

Figure 6.5. Using the push tag

‘2 push Tag Example - Microsoft Internet Ex... |:||E|E|
e

File Edit Wiew Favorites Tools Help i

. Address |SE| http:flocalhost: 3080/ appO6a) Push, ackion Vl Go

Employee Details

Employes Id: 1
First Mame: Karl
Last Mare: Popper

I@ Dane ‘ﬂ Local intranet

The url Tag

This tag creates a URL dynamically. Its attributes are listed in Table 6.10.

Table 6.10. url tag attributes

Name Type Default Description
action String The action that the created URL will target.
anchor String The anchor for the created URL
encode Boolean|true \Whether to encode parameters.

escapeAmp Boolean|true |Indicates whether to escape the ampersand character
(&)

includeContext [Boolean true Indicates whether the actual context should be
included

includeParams |String |get One of these values: one, get, all.

Table 6.10. url tag attributes

Name Type |Default Description
method String The method of the action.
namespace String The target namespace.
portletMode |String The resulting portlet mode.
portletlUr|Type|String Indicates if the created URL should be a portlet render
or an action URL.
scheme String The scheme ?7??
value String The target value to use, if not using action
var String ?7?7?
windowState [String When used in a portlet environment, specifies the

portlet window state.

The url tag can be very useful. For example, this url tag creates a URL for the HTTPS
protocol and includes all the parameters in the current URL.

<s:url id="sit

eUr "

f orceAddSchemeHost AndPort ="true" val ue=""

i ncl udepar ans="none" schenme="https"/>

The if, else, and elself Tags

These three tags are used to perform conditional tests and are similar to Java keywords if,
else and if else. The if and elseif tags must have the test attribute, which is described in

Table 6.11.

Table 6.11. if and else tags attribute

Name| Type Default Description

test* |Boolean The test condition.

For instance, this if tag tests if the ref request parameter is null:

<s:if test="#paraneters.ref == null">

And this trims the name property and tests if the result is empty.

<s:if test="name.trin() =="'""">

In the following example, an if tag is used to test if the session attribute loggedIn exists. If
it is not found, a login form is displayed. Otherwise, a greeting is shown. The example relies

on the IfTestAction class in Listing 6.10 and the If.jsp page in Listing 6.11.

Listing 6.10. The IfTestAction class

package app06a;
i mport org.apache. struts2. Servl et Acti onCont ext ;
i mport com opensynphony. xwor k2. Act i onSupport;
public class |fTestAction extends ActionSupport {
private String userNane;
private String password;
/1l getters and setters not shown
public String execute() {
if (userNanme != null && userNane.length() > 0
&& password !'= null
&& password. length() > 0) {
Servl et Acti onCont ext . get Cont ext ().
get Session(). put ("l oggedl n", true);

}
return SUCCESS;

Listing 6.11. The If.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title>f Tag Exanple</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>
<div id="global" style="w dt h: 350px" >
<s:if test="#session.loggedln == null">
<h3>Logi n</ h3>
<s:fornp
<s:textfield nane="user Name" | abel ="User Nane"/>
<s: password nanme="password" | abel ="Password"/>
<s:submt val ue="Login"/>
</s:fornp
</s:if>
<s:el se>
Wel cone <s:property val ue="user Name"/ >
</s:el se>
</ di v>
</ body>
</htnm >

To test the example, use this URL:

http://1 ocal host: 8080/ app06a/lf. action

The result is shown in Figure 6.6.

The

Figure 6.6. Using the if, elseif, and else tags

2 if Tag Example - Microsoft Internet Explorer

File Edit Wiew Favarites

Help

: Address |@ htkp:fflocalhost: 3080/ app0&a)IF, ackion

Login

User Name: |

Password: |

I@ Dane

‘-ﬂ Local intranet

iterator Tag

This is the most important tag in the control tag category. It can be used to iterate over an
array, a Collection, or a Map and pushes and pops each element in the iterable object to

the Value Stack. Table 6.12 lists the attributes of the iterator tag.

Table 6.12. iterator tag attributes

Name Type Default Description
value |String The iterable object to iterate over.
status|org.apache.struts2.views.jsp.
IteratorStatus
var |String The variable to reference the current

element of the iterable object.

Upon execution, the iterator tag pushes an instance of IteratorStatus to the context map
and updates it at each iteration. The status attribute can be assigned a variable that points
to this IteratorStatus object.

The properties of the IteratorStatus object are shown in Table 6.13.

Table 6.13. IteratorStatus object attributes

Name | Type Description

index linteger The zero-based index of each iteration

count linteger The current iteration or index + 1.

first boolean|{The value is true if the current element is the first element in the
iterable object.

last boolean|{The value is true if the current element is the last element in the
iterable object.

even boolean The value is true if count is an even number

odd boolean The value is true if count is an odd number

modulus|int This property takes an integer and returns the modulus of count.

For example, the IteratorTestAction class in LiSting 6.12 presents an action class with
two properties, interests and interestOptions, that return an array and a List,

respectively. The Iterator.jsp page in Listing 6.13 shows how to use the iterator tag to
iterate over an array or a Collection.

Listing 6.12. The IteratorTestAction class

package app06a;

i nport java.util.ArraylList;

i mport java.util.List;

i mport com opensynphony. xwor k2. Acti onSupport;

public class IteratorTestAction extends ActionSupport {
private int[] interests;
private static List<Interest> interestOptions =
new ArraylList<lnterest>();
static {

i nterestOptions.add(new Interest (1, "Autonotive"));
i nterest Options. add(new Interest(2, "Gnes"));
i nterest Options. add(new Interest (3, "Sports"));

public int[] getlnterests() {
return interests;
}

public void setlnterests(int[] interests) {
this.interests = interests;

public List<lnterest> getlnterestOptions() {
return interestOptions;
}

}

class Interest {
private int id;
private String description;
public Interest(int id, String description) {
this.id = id;
this.description = description;

/'l getters and setters not shown

Listing 6.13. The Iterator.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>terator Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
tabl e {
paddi ng: Opx;
mar gi n: 0px;
bor der-col | apse: col | apse;

}

td, th {
border: 1px solid bl ack;
paddi ng: 5px;
mar gi n: 0px;

}

. evenRow {
backgr ound: #f 8f 8f f;

}

. oddRow {
backgr ound: #ef ef ef ;

}

</styl e>

</ head>

<body>

<div id="global" style="w dt h: 250px" >

First 4 prine nunber

<s:iterator value="{2, 3, 5, 7}">
<s:property/></Ii>

</s:iterator>

</ ul >

<s:set name="car" value="{ 'Chrysler', 'Ford', 'Kia}"/>
Cars:
<s:iterator val ue="#car" status="status">
<s:property/><s:if test="I!#status.last"> </s:if>
</s:iterator>
<p>
<h3>I nt erest options</ h3>
<t abl e>
<tr>
<t h>l d</t h>
<t h>Descri ption</th>
</[tr>
<s:iterator value="interestOptions" status="status">
<s:if test="#status.odd">
<tr class="oddRow'>
</s:if>
<s:if test="#status.even">
<tr class="evenRow'>
</s:if>
<td><s:property value="id"/></td>
<td><s:property val ue="description"/></td>
</tr>
</s:iterator>
</tabl e>
</ di v>
</ body>
</htm >

To test this example, direct your browser to this URL:

http://1 ocal host: 8080/ app06a/lterator.action

Figure 6.7 shows the output of the action.

Figure 6.7. Using the iterator tag

A iterator Tag Example - Microsoft Internet E... [leﬁl[‘S_Tl

File Edit \iew Favorites Tools Help :,r

: Address l@ http: fflocalhost: 8080 app06a Therator . action Vi G0

First 4 prirne number

e QL TR

Cars: Chrysler, Ford, Kia

Interest options

Id | Description

Ltomotive

Games

Sports

IE[Cione %J Local intranet

Another helpful use of iterator is to simulate a loop, similar to the for loop in Java. This is
easy to do since all an iterator needs is an array or another iterable object. The following
code creates a table containing four rows. The cells in each row contain two textfield tags
whose names are user[n].firstName and user[n].lastName, respectively. This is useful
when you need to generate a variable number of input boxes.

<t abl e>
<s:iterator value="new int[3]" status="stat">
<tr>
<td><s:textfield
nanme="9% "' users[' +#stat.index+].firstName'}"/></td>
<td><s:textfield
name="9% "' users[' +#stat.index+].lastNanme'}"/></td>
</tr>
</s:iterator>
</t abl e>

This is the same as writing

<t abl e>
<tr>
<td><s:textfield nane="users[O0].firstNanme"/></td>
<td><s:textfield nane="users[0] .| astNane"/></td>
</tr>
<tr>
<td><s:textfield nane="users[1].firstNanme"/></td>
<td><s:textfield name="users[1].|astNane"/></td>
</tr>
<tr>
<td><s:textfield name="users[2].firstName"/></td>
<td><s:textfield nane="users[2].|astNanme"/></td>
</tr>
</t abl e>

In this case, we generate an array of four ints. We do not need to initialize the array
elements since we're only using the array's status.count attribute.

The following example employs the modulus property of the IteratorStatus object to
format iterated elements in a four-column table.

<t abl e border="1">
<s:iterator id="item' value="nyList" status="status">
<s:if test="#status.nodul us(4)==1">
<tr>
</s:if>
<td>${iten}</td>
<s:if test="#status.nodul us(4)==0">
</[tr>
</s:if>
</s:iterator>

<% - if the list size is not equally divisible by 4, we need to pad
with <td></td> and </tr> --%
<s:if test="nyList.size%l! =0">
<s:iterator value="new int[4 - nyList.size%l]">
<t d> </t d>
</s:iterator>
</[tr>
</[s:if>
</t abl e>

The append Tag

This tag is used to concatenate iterators. Therefore, if you have two lists with 3 elements
each, the new list will have these elements:

e List1, element 1
e List 1, element 2
e List1, element 3

e List 2, element 1
e List 2, element 2
e List 2, element 3

The append tag adds one attribute, var, which is described in Table 6.14.

Table 6.14. append tag attribute

Name|Type Default Description

var String The variable that will be created to reference the appended
iterators.

For example, the code in Listing 6.14 uses the append tag to concatenate two lists:

Listing 6.14. Using append

<s:set var="listl" value="{"one', "two'}"/>
<s:set var="list2" value="{"1", '2', "3"}"/>

<s:append var="al | Li sts">
<s: param val ue="#list1"/>
<s: param val ue="#list2"/>
</ s: append>

<s:iterator value="#allLists">
<s: property/>

</s:iterator>

The example will print the following on the browser:

one
t wo
1
2
3

Also, see the merge tag, which is very similar to append. If you replace append with
merge in the example above, you will get

one
1
t wo
2
3

The merge Tag

The merge tag merges lists and reads an element from each list in succession. Therefore, if
you have two lists with 3 elements each, the new list will have these elements:

List 1, element 1
List 2, element 1
List 1, element 2
List 2, element 2
List 1, element 3
List 2, element 3

The merge tag adds an attribute, var, which is described in Table 6.15.

Table 6.15. merge tag attribute

Name| Type |Default Description

var String The variable that will be created to reference the appended
iterators.

In the following example, the action class MergeTestAction provides three properties that
each returns a List: americanCars, europeanCars, and japaneseCars. The action class

is given in Listing 6.15.

Listing 6.15. The MergeTestAction class

package app06a;

i nport java.util.ArraylList;

i mport java.util.List;

i mport com opensynphony. xwor k2. Acti onSupport;

public class MergeTest Acti on extends ActionSupport {

private static List<String> anericanCars;
private static List<String> europeanCars;
private static List<String> japaneseCars;
static {

americanCars = new ArrayList<String>();

aneri canCars. add(" Ford");

anericanCars. add("GwWC');

aneri canCars. add("Li ncol n");

europeanCars = new ArrayLi st<String>();

eur opeanCars. add(" Audi ") ;

eur opeanCars. add("BMWV) ;

eur opeanCars. add(" VW) ;

j apaneseCars = new ArrayList<String>();

j apaneseCars. add(" Honda") ;

j apaneseCars. add("Ni ssan");
j apaneseCars. add(" Toyot a") ;

}

public List<String> getAnericanCars() {
return anericanCars;

}

public List<String> getEuropeanCars() {
return europeanCars;

}

public List<String> getJapaneseCars() {
return japaneseCars;

}

The Merge.jsp page in Listing 6.16 shows the merge tag in action.

Listing 6.16. The Merge.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<ht nl >
<head>
<title>nerge Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 250px" >
<h3>Al | cars</h3>
<s:merge id="cars">
<s: param val ue="9% aneri canCars}"/ >
<s: param val ue="9% eur opeanCars}"/ >
<s: param val ue="9%j apaneseCars}"/ >
</ s: nerge>

<s:iterator val ue="9%#cars}">
<s:property/></1i>
</s:iterator>
</ ul >
</ di v>
</ body>
</htm >

To test the example, direct your browser to this URL:

http://1 ocal host: 8080/ app06a/ Mer ge. acti on

Figure 6.8 shows the result

2} merge Tag Example - Microsoft Internet E... |Z||E|[z|
T

Figure 6.8. Using the merge tag

File Edit

: Address !@ http: fflocalhosk: 8080/ app06aMerge. action V| =0

Wigws Favorites Tools

Help f;

All cars

Ford
Audi
Honda
G
B
Missan
Linzaln
fratt
Toyota

I@ Dane

‘ﬂ Local inkranek

The generator Tag

This tag is used to generate an iterator and push it to the Value Stack. The closing
generator pops the iterator so that any work that needs to be done must be done within the
start and end tags. Alternatively, you can create a reference to the iterator as a page
attribute. This way, you can access the iterator at a later stage.

The attributes are listed in Table 6.16.

Table 6.16. generator tag attributes

Name Type Default Description
converter Converter The converter to convert the String entry parsed from val
into an object.
count Integer The maximum number of elements in the iterator.

Table 6.16. generator tag attributes

Name Type D

efault Description

separator®|String

The separator for separating the val into entries of the

iterator.
val* String The source to be parsed into an iterator.
var String The variable that references the resulting iterator.

When used, the convert

er attribute must be set to an action property of type Converter,

an inner interface defined in the org.apache.struts2.util.lteratorGenerator class.

The use of the converter

is depicted in the second example of this section.

The Generator.jsp page in Listing 6.17 illustrates the use of generator to create a list

of Strings (car makes).

Listing 6.17. The Generator.jsp page

<U@taglib prefix="s"
<htm >
<head>
<titl e>generator Tag
<style type="text/css
</ head>
<body>
<div id="global" styl
<s:generator val =
separ at or

<s:iterator>
<s:pr
</s:iterator>
</ ul >
</ s: generat or >

<s: generator id="
count =" 3"

val =" %' Canon, Ni kon, Pentax, Fuji Film}"

separ at or
</ s: generat or >
<s:iterator val ue
<s: property/>
</s:iterator>
</ di v>
</ body>
</htm >

uri="/struts-tags" %

Exanple</title>
">@nmnport url(css/main.css);</style>

e="w dt h: 250px" >
"9%{' Honda, Toyot a, Ford, Dodge' }"

=" ">

operty/></1i>

caner as"

=" ">

="#attr.caneras">

To test the example, direct your browser here:

http://1 ocal host: 8080/ app06a/ Gener at or. acti on

You will see the generated list in Figure 6.8.

Figure 6.9. Using the generator tag

Al generator Tag Example - Microsoft Internet E... |Z||E|['$__<|
/ ﬁr

. File Edit \iew Favorites Tools Help
. Address !SEJ http: flocalhost: 3060 appl6a)Generator . ackion % | Go

Honda
Toyota
Ford

Dodge

Canon Hikon Pentax

El Done \:g Local inkranet

As a second example, consider the GeneratorConverterTestAction class in Listing

6.15. This class has one property, myConverter, that returns an implementation of
IteratorGenerator.Converter. The Converter interface defines one method, convert,
whose signature is given as follows.

hj ect convert(String value) throws Exception

In a generator tag that has a converter, each element of the generated iterator will be
passed to this method.

Listing 6.18. The GeneratorConverterTestAction class

package app06a;
i mport org.apache.struts2.util.IteratorGenerator;
i mport com opensynphony. xwor k2. Acti onSupport;
public class GeneratorConverterTest Acti on extends ActionSupport ({
public IteratorCenerator.Converter get MConverter() {
return new lteratorCenerator.Converter() {
public Qbject convert(String value) throws Exception {
return val ue. t oUpper Case();
}

b

The GeneratorConverter.jsp page in Listing 6.16 uses a generator tag whose
converter attribute is assigned a converter.

Listing 6.19. The GeneratorConverter.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>CGenerator Converter Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 250px" >
<s: generator val ="% ' Honda, Toyot a, For d, Dodge' }"
separator=","
converter="nyConverter">

<s:iterator>
<s:property/></Ii>
</s:iterator>
</ ul >
</ s: gener at or >
</ di v>
</ body>
</htm >

You can test the example directing your browser to this URL.

http://1 ocal host: 8080/ app06a/ Gener at or Converter. action

As you can see in Figure 6.10, all elements were converted to upper case.

Figure 6.10. The generator converter example

=
(=

2 Generator Converter Example - Microsoft Internet Ex... E'E'
i

File Edit Wiew Favorites Tools Help h

. Address |SE| hktp:) flocalhost : 2080/ appl6a/Gener akarCanverker ackion Vl G0

HOMDA
TOYOTA
FORD
DODGE

I@ Cione "ﬂ Local intranet

The sort Tag

This tag sorts the elements of an iterator. Its attributes are given in Table 6.17.

Table 6.17. sort tag attributes

Name Type Default Description
comparator* java.util.Comparator The comparator that will be used in the
sorting.
source String The iterable source to sort.
var String The variable that will be created to reference
the new iterator.

Note

It is a good design choice to leave data sorting to the presentation layer, even though it
may be easier to sort data at the model or data level using the ORDER BY clause in the SQL
statement. This is a design decision that should be considered carefully.

For example, the SortTestAction class in Listing 6.20 provides a property of type
Comparator that is used by the sort tag in the Sort.jsp page (See Listing 6.21.)

Listing 6.20. The SortTestAction class

package app06a;
i mport java.util.Conparator;
i mport com opensynphony. xwor k2. Act i onSupport ;

public class SortTestAction extends ActionSupport {
publ i c Conparat or get MyConparator () {
return new Conparator() {
public int conpare(Object ol, Object 02) {
return ol.toString().conpareTo(o02.toString());
}

b

Listing 6.21. The Sort.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>sort Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 250px" >
<h4>Conput er s</ h4>
<s:generator id="conputers"
val =" %' HP, Del | , Asus, Fuj i tsu, Toshi ba'}"
separator=",">
<s:sort conparator="nyConparat or">
<s:iterator>
<s: property/>
</s:iterator>
</s:sort>
</ s: gener at or >
<hr/>

<h4>Caner as</ h4>

<s: generator id="caneras"
val =" %' Canon, Ni kon, Pentax, Fuji Film}"
separator=",">

</ s: gener at or >

<s:sort source="#attr.caneras" id="sortedCaneras
conpar at or =" nyConpar at or" >

</s:sort>

<s:iterator value="#attr.sortedCaneras">

<s: property/>
</s:iterator>

</ div>
</ body>
</htm >

To see the elements in the iterators sorted, direct your browser to this URL:

http://1 ocal host: 8080/ appO6a/ Sort. action

Figure 6.11 shows the result.

Figure 6.11. Using the sort tag

A sort Tag Example - Microsoft Internet Ex... |:||E|E|
File Edit Miew Favorites Tools Help a"

: Address |@ http: fflocalhost: 8080/ app06a) Sort, ackion V| G0

Computers

Aszus Dell Fujitsu HP Toshiba

Cameras

Canon FujiFilm Mikon Pentax

IQ Daone ‘ﬂ Local intranet

The subset Tag

This tag creates a subset of an iterator. Its attributes are listed in Table 6.18.

Table 6.18. subset tag attributes

Name | Type Default Description

count |Integer The number of entries in the resulting iterator.

decider|Decider An implementation of the SubsetlteratorFilter.Decider
interface that determines if an entry is to be included in the
resulting subset.

source |String The source iterator to subset.

start |Integer The starting index of the source iterator to be included in the
subset.

var String The variable to be created to reference to the subset.

You tell the subset tag how to create a subset of an iterator by using an instance of the
Decider class, which is an inner class of org.apache.struts2.util.SubsetlteratorFilter.

For example, the SubsetTestAction class in Listing 6.22 is a Decider. It will cause a
subset tag to include an element if the String representation of the element is more than

four characters long. The Subset.jsp page in Listing 6.23 employs a subset tag that
uses the Decider.

Listing 6.22. The SubsetTestAction class

package app06a;
i mport org.apache.struts2.util.SubsetlteratorFilter;
i mport com opensynphony. xwor k2. Acti onSupport ;

public class Subset Test Acti on extends ActionSupport {
public SubsetlteratorFilter. Decider get MyDecider() {
return new SubsetlteratorFilter. Decider() {
publ i c bool ean deci de(Ohj ect 01) {
return ol.toString().length() > 4
}

Listing 6.23. The Subset.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>subset Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 250px" >
<h4>Conput er s</ h4>
<s:generator id="conputers"
val =" %' HP, Del | , Asus, Fuj i tsu, Toshi ba'}"
separator=",">
</ s: gener at or >
<s:subset source="#attr.conputers" decider="nyDecider">
<s:iterator>
<s: property/>
</s:iterator>
</ s: subset >
</ di v>
</ body>
</htm >

Test this example by directing your browser to this URL.

http://1 ocal host: 8080/ appO6a/ Subset . acti on

Figure 6.12 shows the result.

Figure 6.12. Using the subset tag

=3
File Edit Wiew Favoribes Tools Help #

2l subset Tag Example - Microsoft Internet Ex... |:

. Address |@ http: fflocalhost: 8080/ appO6a)subset action V| es]

Computers

Fujitsu Toshiba

@ Cone ‘:J Local inkranet

Summary

The Struts tag library comes with non-Ul tags that are often referred to as generic tags.
These tags can be categorized into the data tags and the control tags and you've learned

every one of them in this chapter.

Chapter 7. Type Conversion

In Chapter 5, "Form Tags" you learned to use form tags to receive user inputs and submit
them to an action object. In Chapter 6, "Generic Tags" you saw how those values could be
displayed. In both chapters you witnessed type conversions.

From an HTML form to an action object, conversions are from strings to non-strings. All
form inputs are sent to the server as request parameters and each form input is either a
String or a String array because HTTP is type agnostic. At the server side, the web
developer or the framework converts the String to another data type, such as an int or a
java.util.Date.

As you will learn in this chapter, Struts supports type conversions seamlessly. In addition,
this feature is extensible, so you can build your own type converters. Custom converters are
covered in this chapter too.

Type Conversion Overview

The Parameters interceptor, one of the interceptors in the default stack, is responsible for
mapping request parameters with action properties. Since all request parameters are
Strings, and not all action properties are of type String, type conversions must be
performed on any non-String action properties. The Parameters interceptor uses the OGNL
API to achieve this. To be precise, if you happen to be interested in the Struts source code,
it is the ognl.OgnlRuntime class, which in turn relies on Java reflection. For every property
that needs to be set, OgnlRuntime creates a java.lang.reflection.Method object and calls its
invoke method.

With the Method class, Strings are automatically converted to other types, enabling user
inputs to be assigned to action properties of type int, java.util.Date, boolean, and others.
The String "123" mapped to an int property will be converted to 123, "12/12/2008" mapped
to a Date property will be converted to December 12, 2008.

Note

As for conversion from String to Date, the date pattern for parsing the String is determined
by the locale of the HTTP request. In the United States, the format is MM/dd/yyyy. To
accept dates in a different pattern from the locale, you have to use a custom converter.

Type conversions, however, run the risk of failing. Trying to assign "abcd" to a Date
property will definitely fail. So will assigning a formatted number such as 1,200 to an int. In
the latter, the comma between 1 and 2 causes it to fail. It is imperative that the user gets
notified when a conversion fails so that he or she may correct the input. It's the
programmer's job to alert the user, but how do you do that?

A failed conversion will leave a property unchanged. In other words, int will retain the value
of 0 and a Date property will remain null. A zero or null value may be an indication that a
type conversion has failed, but it will not be a clear indicator if zero or null is an allowable
value for a property. If zero or null is a valid property value, there's no way you can find out
that a conversion has produced an error other than by comparing the property value with
the corresponding request parameter. Doing so, however, is not recommended. Not only is

checking the request parameter an inelegant solution, it also defeats the purpose of using
Struts because Struts is capable of mapping request parameters to action properties.

So, what does Struts have to offer?

A failed type conversion will not necessarily stop Struts. There are two possible outcomes
for this misbehavior. Which one will happen depends on whether or not your action class
implements the com.opensymphone.xwork?2.ValidationAware interface.

If the action class does not implement this interface, Struts will continue by invoking the
action method upon failed type conversions, as if nothing bad had happened.

If the action class does implement ValidationAware, Struts will prevent the action method
from being invoked. Rather, Struts will enquiry if the corresponding action element
declaration contains an input result. If so, Struts will forward to the page defined in the
result element. If no such result was found, Struts will throw an exception.

Customizing Conversion Error Messages

The Conversion Error interceptor, also in the default stack, is responsible for adding
conversion errors (provided the action implements ValidationAware) and saving the
original value of a request parameter so that an incorrect input value can be redisplayed.
The input field with the invalid value, provided a non-simple theme is used for the tag
rendering the field, will get an error message of this format:

Invalid field value for field fiel dNane.

You can override the default error message by providing a key/value pair of this format:

invalid.fieldval ue.fiel dName=Cust om error nessage

Here, fieldName is the name of the field for which a custom error message is provided. The
key/value pair must be added to a ClassName.properties file, where ClassName is the
name of the class that contains the field that is the target of the conversion. Further, the
ClassName.properties file must be located in the same directory as the Java class.

In addition to customizing an error message, you can also customize its CSS style. Each
error message is wrapped in an HTML span element, and you can apply formatting to the
message by overriding the errorMessage CSS style. For example, to make type conversion
error messages displayed in red, you can add this to your JSP:

<styl e>
.errorMessage {

col or:red;
}

</styl e>

A type conversion error customization example is given in the appO7a application. The
directory structure of this application is shown in Figure 7.1.

Figure 7.1. app07a directory structure

Ijj appld7a
+ = C5s
—l=r i5p
Receipt.jsp
Transaction.jsp
—|-[= WEE-INF
—l-z= classes
=== app07a
fm Transaction.class
[Z| Transaction.properties
struts. xml
+-[= lib
web . xml

The Transaction action class in Listing 7.1 has four properties: accountld (String),
transactionDate (Date), amount (double), and transactionType (int). More
important, Transaction extends the ActionSupport class, thus indirectly implementing
ValidationAware.

Listing 7.1. The Transaction action class

package app07a;

i mport java.util.Date;

i mport com opensynphony. xwor k2. Acti onSupport;
public class Transaction extends ActionSupport {

private String accountld;
private Date transactionDate;
private doubl e anount;
private int transactionType;

/1l getters and setters not shown

Note

We could use java.util.Currency for amount, but using a double serves as a good
example for the type conversions in this example.

There are two actions in this example, Transactionl and Transaction2. The following are
the declarations for the actions in the struts.xml file.

<action name="Transactionl">
<result>/jsp/ Transaction.jsp</result>

</ action>

<action name="Transaction2" class="app07a. Transaction">
<result nane="input">/jsp/ Transaction.jsp</result>
<result nane="success">/|sp/ Receipt.]sp</result>

</ action>

Transactionl simply displays the Transaction.jsp page, which contains a form and is

shown in Listing 7.2. Transaction2 has two result branches. The first one is executed if
the action method returns "input,” as is the case when there is a type conversion error. The
second one is executed if no type conversion error occurs and forwards to the Receipt.jsp

page in Listing 7.3.

Listing 7.2. The Transaction.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Transaction Details</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;
}

</styl e>
</ head>
<body>
<div id="global" style="w dth: 350px" >
<h4>Tr ansacti on Detail s</ h4>
<s:form action="Transacti on2">
<s:textfield nanme="accountld" |abel ="Account ID'/>
<s:textfield nane="transacti onDat e"
| abel =" Transacti on Date"/>
<s:textfield nane="transacti onType"
| abel =" Transacti on Type"/>
<s:textfield name="anount" | abel =" Anount"/>
<s:submt/>
</s:fornme
</ di v>
</ body>
</htm >

Listing 7.3. The Receipt.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Transaction Conplete</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" styl e="w dt h: 250px" >
<h4>Transaction detail s: </ h4>
<t abl e>

<tr>
<td>Account ID: </td>
<td><s:property val ue="accountld"/>
</[tr>
<tr>
<td>Transacti on Date: </td>
<td><s: property val ue="transacti onDate"/>
</tr>
<tr>
<td>Transaction Type: </td>
<td><s: property val ue="transacti onType"/>
</[tr>
<tr>
<t d>Armount : </ t d>
<td><s: property val ue="anount"/>
</tr>
</tabl e>
</ di v>
<s: debug/ >
</ body>
</htm >

The Transaction.properties file, shown in Listing 7.4, overrides the type conversion
error message for the transactionDate field. This file must be located in the same
directory as the Transaction action class.

Listing 7.4. The Transaction.properties file

invalid.fieldval ue.transacti onDat e=Pl ease enter a date in MM dd/yyyy format

To test this example, invoke the Transactionl action by directing your browser here:

http://1 ocal host: 8080/ appO7a/ Transacti onl. acti on

You'll see the form with four input boxes as in Figure 7.2.

Figure 7.2. The Transaction.jsp page

<} Transaction Details - Microsoft Internet Explorer |: E'E'
.'1:

i Address |@ http: fflocalhost: 3080/ app07a) Transackion] ,action V| &0

File Edit Wiew Favoribes Tools Help

Transaction Details

Sccount ID:

| |

Transaction Date: | |
| |

| |

Transaction Type

Arnount:
I@ Cone \J Local intranet

To test the type conversion feature in Struts, | deliberately enter incorrect values in the
Transaction Date and Amount boxes. In the Transaction Date box | enter abcd and in the
Amount box | type 14,999.95. After the form is submitted, you will see the same form as

shown in Figure 7.3.

Figure 7.3. Failed type conversions

2 Transaction Details - Microsoft Internet Explorer |: §|E|

File Edit \iew Favarites Tools Help -.',F

. Address |@ http: fflocalhost: 3030, app07 &) TransactionZ?, action V| a G0

Transaction Details

Account ID: |4TvD00g |
FPlease enter a date in MM/dd/vyyy
format

Transaction Date: |abcd |

Transaction Type: |1 |
Invalid field value for field "amount",

Amount: 14,999.50 |
&) Dane %J Local inkranet

What happened was abcd could not be converted to a Date. 14,999.50 looks like a valid
numerical value, but its formatting makes it a bad candidate for a double, the type of the
amount property. Had | entered 14999.50, Struts would happily have converted it to a
double and assigned it to the amount property.

The Transaction Date field is being adorned with the custom error message specified in the
Transaction.properties file. The Amount field is being accompanied by a default error
message since the Transaction.properties file does not specify one for this field.

An important thing to notice is that the wrong values are re-displayed. This is an important
feature since the user can easily see what is wrong with his/her form.

Custom Type Converters

Sophisticated as they may be, the built-in type converters are not adequate. They do not
allow formatted numbers (such as 1,200) to be converted to a java.lang.Number or a
primitive. They are not smart enough to permit an arbitrary date pattern to be used. To
overcome this limitation, you need to build your own converter. Happily, this is not hard to
do.

A custom type converter must implement the ognl.TypeConverter interface or extend an

implementation class. As you can see in Figure 7.4 there are two implementation classes
available for you to extend, DefaultTypeConverter and StrutsTypeConverter.
DefaultTypeConverter is discussed in this section and StrutsTypeConverter in the next
section.

Figure 7.4. TypeConverter and its implementation classes

£4interfaces>
agnl. TypaConwverter

pAY

ognl.DefaultTypeConverter

org.apache struts2. util. StrutsTypeConverter I

The TypeConverter interface has only one method, convertValue, whose signature is as
follows. Struts invokes this method and passes the necessary parameters whenever it needs
the converter's service.

java.l ang. Obj ect convertVal ue(java.util.Mp context,
java.l ang. Obj ect target, java.lang.reflect. Menber menber,
java.lang. String propertyName, java.lang. Cbject val ue,
java.lang. d ass toType);

The parameters are as follows.

context. The OGNL context under which the conversion is being performed.
target. The target object in which the property is being set

member. The class member (constructor, method, or field) being set
propertyName. The name of the property being set

e value. The value to be converted.
e toType. The type to which the value is to be converted.

The context argument is very useful as it contains references to the Value Stack and
various resources. For example, to retrieve the Value Stack, use this code:

Val ueSt ack val ueStack = (Val ueSt ack)
cont ext . get (Val ueSt ack. VALUE_STACK) ;

And, of course, once you have a reference to the Value Stack, you can obtain a property
value by using the findValue method:

val ueSt ack. fi ndVval ue(propertyNane) ;

To obtain the ServletContext, HttpServietRequest, and the HttpServiletResponse
objects, use the static finals defined in the org.apache.struts2.StrutsStatics interface:

context.get(StrutsStatics. SERVLET_CONTEXT) ;
context.get(StrutsStatics. HTTP_REQUEST) ;
context.get(StrutsStatics. HTTP_RESPONSE) ;

For a custom converter to function, you need to provide code that works for each supported
type conversion. Typically, a converter should support at least two type conversions, from
String to another type and vice versa. For instance, a currency converter responsible for
converting String to double and double to String would implement convertValue like
this:

public Object convertVal ue(Map context, Object target,
Menber nenber, String propertyNane, Object val ue,
O ass toType) {
if (toType == String.class) {
/'l convert fromdouble to String and return the result

} else if (toType == Double.class || toType == Doubl e. TYPE) {
/1 convert String to double and return the result

}

return null;

Implementing TypeConverter is not as easy as extending the DefaultTypeConverter
class, a default implementation of TypeConverter. DefaultTypeConverter, shown in
Listing 7.5, provides a default implementation of convertValue that calls another
convertValue method with a simpler signature.

Listing 7.5. The DefaultTypeConverter class

package ognl ;

i mport java.lang.refl ect. Menber;

i mport java.util.Map;

public class Default TypeConverter inplements TypeConverter {

public Object convertVal ue(Map context, Cbject target,
Menber nenber, String propertyNanme, Object val ue,
Class toType){
return convertVal ue(context, value, toType);

public Object convertVal ue(Map context, Cbject val ue,
Class toType) {
return Qgnl Ops. convert Val ue(val ue, toType);

Configuring Custom Converters

Before you can use a custom type converter in your application, you must configure it.
Configuration can be either field-based or class-based.

Field-based configuration allows you to specify a custom converter for each property in an
action. You do this by creating a file that must be named according to the following format.

Act i onCl ass-conversi on. properties

Here, ActionClass is the name of the action class. For instance, to configure custom
converters for an action class called User, create a filed named User-
conversion.properties. The content of this file would look something like this.

fieldl=custonConverterl
field2=cust onConverter?2

In addition, the configuration file must reside in the same directory as the action class. The
app07b application shows how you can write a field-based configuration file for your
custom converters.

In class-based configuration you specify the converter that will convert a request parameter
to an instance of a class. In this case, you create an xwork-conversion.properties file
under WEB-INF/classes and pair a class with a converter. For example, to use
CustomConverterl for a class, you'll write

fullyQualifiedC assNane=Cust onConverterl

app07c teaches you how to use class-based configuration.

Custom Converter Examples

The appO7b application shows how to implement TypeConverter and extend

DefaultTypeConverter. The directory structure of app07b is shown in Figure 7.5.
There are two custom converters showcased in this application, one for converting
currencies and one for converting dates. The first implements TypeConverter and the
second extends DefaultTypeConverter.

Figure 7.5. app07b directory structure

15' app07h
H--[ZL 55
== jsp
|=| Receipt.jsp
|=| Transaction.jsp
== \WEB-INF
-l classes
== appl7b
== conwerker
Jul__."u My Currency Converter . class
{.l__.}. MyDateConverter, class
Tb Transaction.class
Transackion.properties
Transackion-conversion, propetties
|=| skruts.=ml
+-[= lib

|=| web.zml

The currency converter is encapsulated in the MyCurrencyConverter class in Listing

7.6. The first if block provides conversion to String by using NumberFormat and
DecimalFormat. Conversions from String to double are done in the second if block by
removing all commas in the value.

Listing 7.6. The MyCurrencyConverter class

package appO7b. converter;

i mport java.lang.refl ect. Menber;

i mport java.text.Decinal Fornat;

i mport java.text.Nunber For mat ;

i mport java.util.Map;

i mport ognl . TypeConverter;

i mport com opensynphony. xwor k2. util. TypeConver si onExcepti on;

public class MyCurrencyConverter inplenents TypeConverter {
public Object convertVal ue(Map context, OCbject target,
Menber nenber, String propertyNanme, Object val ue,
Class toType) {
if (toType == String.class) {

Nunber Format fornatter = new Deci nal For nat ("#, ##0. 00") ;
return formatter. fornmat ((Double) val ue);
} else if (toType == Doubl e.cl ass
|| toType == Doubl e. TYPE) ({
try {
String[] s = (String[]) val ue;
String doubl eval ue = s[0];
/'l renobve conmas,
/'l we could use a one-line regular expression,
/1 String doublevValue = s[0].replaceA Il ("[,]", "");
/1 but regul ar expressions are conparatively
/'l much sl ower
return Doubl e. par seDoubl e(
repl aceString(doubl evalue, ',', ""));
} catch (Nunber For mat Exception e) {
Systemout.printin("Error:" + e);
t hrow new TypeConver si onExcepti on("Wong");
}
}
return null;

}

public static String replaceString(String s, char c,
String with) {
if (s == null) {
return null;
}
int length = s.length();
StringBuilder sb = new StringBuilder(s.length() * 2);
for (int i =0; i < length; i++) {
char ¢c2 = s.charAt(i);
if (c2 ==¢) {
sb. append(wi th);
} else {
sb. append(c2);

}
return sh.toString();

The date converter is encapsulated in the MyDateConverter class in Listing 7.7. Only
conversions from String to Date are catered for. Date to String is not important since you
can use the date tag to format and print a Date property.

Listing 7.7. The MyDateConverter class

package appO7b. converter;

i mport java.text.DateFornmat;

i mport java.text.ParseException;

i mport java.text. Sinpl eDat eFormat;

i mport java.util.Date;

i mport java.util.Map;

i mport javax.servlet. Servl et Cont ext ;

i nport org.apache.struts2. StrutsStatics;

i mport ognl . Defaul t TypeConverter;

i mport com opensynphony. xwor k2. util. TypeConver si onExcepti on;

public class MyDateConverter extends Defaul t TypeConverter {
public Object convertVal ue(Map context, Object value, d ass
toType) {
if (toType == Date.class) {
Servl et Cont ext servl et Context = (ServletContext)
context.get(StrutsStatics. SERVLET_CONTEXT) ;
String datePattern =
servl et Cont ext. getl nitParaneter("datePattern");
Dat eFormat format = new Si npl eDat eFor mat (dat ePattern);
format. setLeni ent (fal se);
try {
String[] s = (String[]) val ue;
Date date = format. parse(s[0]);
return date;
} catch (ParseException e) {
Systemout.printin("Error:" + e);
t hrow new
TypeConver si onException("lInvalid
conversion");
}
}

return null;

You can use any date pattern for formatting the dates and parsing the Strings. You pass
the date pattern as an initial parameter to the ServletContext object. If you open the
web.xml file of app07b, you'll see this context-param element, which indicates that the
date pattern is yyyy-MM-dd.

<cont ext - par an>
<par am nane>dat ePat t er n</ par am nane>
<par am val ue>yyyy- M\t dd</ par am val ue>
</ cont ext - par an

As you can see in the if block in LiSting 7.7, you first need to obtain the date pattern
from the ServletContext object. After that you employ a java.text.DateFormat to
convert a String to a Date.

Finally, the Transaction-conversion.properties file (shown in Listing 7.8) registers the
two custom converters using field-based configuration.

Listing 7.8. The Transaction-conversion.properties file

amount =app07b. converter. MyCurrencyConvert er
transacti onDat e=app07b. converter. MyDat eConverter

To test this example, direct your browser to this URL:

http://1 ocal host: 8080/ app07b/ Transacti onl. acti on

Extending StrutsTypeConverter

Since in most type converters you need to provide implementation for String to non-String
conversions and the other way around, it makes sense to provide an implementation class
of TypeConverter that separates the two tasks into two different methods. The
StrutsTypeConverter class, a child of DefaultTypeConverter, is such a class. There are
two abstract methods that you need to implement when extending StrutsTypeConverter,
convertFromString and convertToString. See the StrutsTypeConverter class definition

in Listing 7.9.

Listing 7.9. The StrutsTypeConverter class

package org.apache.struts2. util;
i mport java.util.Mp;
i mport ognl . Defaul t TypeConverter;

public abstract class StrutsTypeConverter
ext ends Def aul t TypeConverter ({
public Ooject convertVal ue(Map context, Object o,
Class tod ass) {
if (tod ass.equals(String.class)) {
return convertToString(context, o0);
} else if (o instanceof String[]) {
return convertFronttring(context, (String[]) o,
tod ass);
} elseif (o instanceof String) {
return convertFronttring(context,
new String[]{(String) o}, tod ass);
} else {
return perfornfal | backConversi on(context, o, toCd ass);
}

}

public abstract Object convertFronttring(Map context,
String[] values, dass tod ass);

public abstract String convertToString(Map context, Object 0);

protected bj ect perfornfal | backConversi on(Map context, Object
0,
Class tod ass) {
return super.convertVal ue(context, o, tod ass);

The implementation of convertValue in StrutsTypeConverter calls either
convertFromsString or convertToString, depending on which direction type conversion
must be performed. In addition, the performFallbackConversion method will be called if
the object to be converted is not a String or the target type (toClass) is not a String or a
String array.

The appO7c application illustrates the use of StrutsTypeConverter by featuring a
converter for converting Color objects to Strings and vice versa. The user can specify a
color by defining its red, green, and blue components in a comma-delimited String. For
instance, blue is 0,0,255 and green is 0,255,0. Each component value must be an integer in

the range of 0 and 255. A Color object is an instance of the Color class shown in Listing

7.10. A color consists of red, green, and blue components and have a getHexCode
method that returns the hexadecimal code of the color.

Listing 7.10. The Color class

package appO7c;
i mport com opensynphony. xwor k2. Acti onSupport;

public class Col or extends ActionSupport {
private int red;
private int green;
private int blue;

/1l getters and setters not shown

public String get HexCode() {
return (red < 16? "0" : "")
+ I nteger.toHexString(red)
(green < 16?2 "0" : "")
I nt eger.toHexString(green)
(blue < 16?2 "0" : "")
I nt eger.toHexString(bl ue);

+ + + 4+

The directory structure of appO7c is shown in Figure 7.6. There are two actions defined
in it, Designl and Design2, as described in the struts.xml file accompanying appO7c.

The action declarations are printed in Listing 7.11.

Figure 7.6. appO7c directory structure

Ijj- applyc
+-[55
=l-[= jsp
|=| Design.isp
|Z| Display.jsp
S22 WEB-INF
=== rclasses
—-[= app07c
=~ conwverter
@o My ColorConverter, class
furh Color.class
tarh Design.class
|=| struts.zml
wwork-conwversion, properties
+ - lib

= web.xml

Listing 7.11. The action declaration

<package name="app07c" extends="struts-defaul t">
<action nane="Designl">
<resul t>/jsp/ Design.jsp</result>
</ action>
<action name="Desi gn2" cl ass="app07c. Desi gn">
<result nanme="input">/jsp/Design.jsp</result>
<result nanme="success">/jsp/Display.jsp</result>
</ action>
</ package>

The Designl action is used to take a design from the user. A design is modeled as an

instance of the Design class in Listing 7.12. It is a simple class that has two properties,
designName and color.

Listing 7.12. The Design class

package appO7c;
i mport com opensynphony. xwor k2. Acti onSupport;
public class Design extends ActionSupport {
private String desi gnNane;
private Col or col or;
/1l getters and setters not shown

The MyColorConverter class in Listing 7 .13 is derived from StrutsTypeConverter that
provides services for converting a String to a Color and a Color to a String. Its
convertFromString method splits a String representation of a color into its red, green,

and blue components and constructs a Color object. Its convertToString method takes a
Color object and constructs a String.

Listing 7.13. The MyColorConverter class

package appO7c. converter;

i mport java.util.Mp;

i mport org.apache.struts2.util.StrutsTypeConverter;

i mport app07c. Col or;

i mport com opensynphony. xwor k2. util. TypeConver si onExcepti on;

public class MyCol or Converter extends StrutsTypeConverter {
public Object convertFronttring(Map context, String[] val ues,
Class tod ass) {
bool ean ok = fal se;
String rgb = val ues[O0];
String[] col orConmponents = rgb.split(",");
i f (colorConponents != null
&& col or Conponents.length == 3) {
String red = col or Conponent s[0] ;
String green = col or Conponent s[1];
String blue col or Conponent s[2] ;
i nt redCode 0;
i nt greenCode = 0;
i nt blueCode = 0;
try {
redCode = Integer.parselnt(red.trim));
greenCode = Integer.parselnt(green.trim));
bl ueCode = Integer.parselnt(blue.trin());
if (redCode >= 0 && redCode < 256
&& greenCode >= 0 && greenCode < 256
&& bl ueCode >= 0 && bl ueCode < 256) {
Col or color = new Col or();
col or. set Red(r edCode) ;
col or. set G een(greenCode);
col or. set Bl ue(bl ueCode) ;
ok = true;
return col or

}
} catch (Nunmber For mat Exception e) {

}
if ('ok) {
t hr ow new
TypeConver si onException("Invalid col or codes");

return null;

}

public String convertToString(Map context, Object o) {
Col or color = (Color) o;
return color.getRed() + ","
+ color.getGeen() +","
+ col or. get Bl ue();

To use MyColorConverter, you must configure it. The xwork-conversion.properties file

in Listing 7.14 is the class-based configuration file. There is only one entry in this file,

mapping the Color class with MyColorConverter. If you're mapping more than one class,
feel free to add more entries in this file.

Listing 7.14. The xwork-conversion.properties file

app07c. Col or =app07c. converter. MyCol or Converter

Alternatively, you could also do field-based configuration by creating a Design-
conversion.properties file in the WEB-INF/classes/app07c directory with one entry:

col or=app07c. converter. MyCol or Converter

To test the color converter, direct your browser to this URL:

http://1 ocal host: 8080/ app07c/ Desi gnl. acti on

You will see a form with two text fields like the one in Figure 7.7. Enter a design name
and a color.

Figure 7.7. Using a color converter

A Color - Microsoft Internet Explorer |'._||'E|[E|
File Edit Wiew Favorites Tools Help f‘.’

! Address !séj http: filocalhost: 8080/ app07c/Design . ackion V| =0
Color

Please enter the RGE components, each of which is an integer
between 0 and 255 (inclusive), Separate two components with a
cormma. For example, green is 0,255,0.

Design Name: |Tile Avx |
Color: 2434102 |

@hl Cone ‘3! Local inkrarnet

If you enter a valid color and submit the form, you will invoke the Design2 action and have
the color displayed as in Figure 7.8.

Figure 7.8. Displaying a color

3 Design Details - Microsoft Internet Explorer Z”E”zl
o

File Edit \Miew Favorites Tools Help i

: Address I;Ej hittps fflocalbost: 30580/ app07c/Designz . action; jsessionid=0369¢ V| Go

Design details:

Design name: Tile &0
Color code: 24,334,102

I:EI Cione ‘-;_-! Local intranet

Working with Complex Objects

Oftentimes, form fields are mapped to properties in multiple objects. Thanks to OGNL, it is
easy to do this and use a custom converter for a property in any object. The appO7d

application, whose directory structure is shown in Figure 7.9, illustrates how to deal with
this scenario.

Figure 7.9. app07d directory structure

Ijj- app07d
E R e
== jsp
|=| Admin,jsp
|=| Confirmation. jsp
== WEB-INF
-l classes
—l-[-= app07d
=-[-= converker
’ﬂl__,}. MyDateConverker,class
farh Admin. class
Admin-conyersion. properties
J.p__,} Emplovee. class

|=| skruts.z=ml

+-[= lib

|=| web.xml

This sample application has two actions, Adminl and Admin2, that can be used to add an
Employee to the database. Every time a new employee is added, the admin id must also be
noted because there are multiple users in the admin role. The action declarations in the

struts.xml are shown in Listing 7.15.

Listing 7.15. The action declaration

<package name="app07d" extends="struts-default">
<action nanme="Adm nl1">
<resul t>/jsp/ Adm n.jsp</resul t>
</ action>
<action nane="Adm n2" cl ass="app07d. Adni n">
<result name="input">/jsp/Adm n.jsp</result>
<result name="success">/jsp/ Confirmation.jsp</result>
</ action>
</ package>

The Admin class (See Listing 7.16) has two properties, adminld and employee,
adminld is a String, but employee is of type Employee, another class (shown in Listing

7.17) with its own properties (firstName, lastName, and birthDate). With one HTML
form, how do you populate an Admin and an Employee and at the same time use a

custom converter for the birthDate property?

Listing 7.16. The Admin class

package app07d;
i mport com opensynphony. xwor k2. Acti onSupport ;
public class Adm n extends ActionSupport ({
private Enpl oyee enpl oyee;
private String adm nld;
/1l getters and setters not shown

public String execute() {
/1l code to insert the enployee to the database here

ret urn SUCCESS;

Listing 7.17. The Employee class

package app07d;
i mport java.util.Date;

public class Enpl oyee {
private String firstNane;
private String |astNaneg;
private Date birthDate;

/'l getters and setters not shown

The answer is simple: OGNL. A form tag can be mapped to a property's property. For
example, to map a field to the firstName property of the employee property of the action,

use the OGNL expression employee.firstName. The Admin.jsp page in Listing 7.18
shows the form whose fields map to two objects.

Listing 7.18. The Admin.jsp page

<U@taglib prefix="s" uri="/struts-tags" %
<ht ml >
<head>
<titl e>Add Enpl oyee</title>
<style type="text/css">@nport url(css/main.css);</style>
<styl e>
.errorMessage {
col or:red;

</styl e>
</ head>
<body>
<di v id="gl obal" style="wi dth: 450px" >
<h4>Add Enpl oyees</ h4>
<s:form action="Adm n2">
<s:textfield name="adm nld" | abel ="Adnmin ID'/>
<s:textfield nane="enpl oyee. firstNane"
| abel =" Enpl oyee First Nane"/>
<s:textfield nane="enpl oyee. | ast Nane"

| abel =" Enpl oyee Last Nane"/>
<s:textfield nane="enpl oyee. bi rt hDat e"
| abel =" Enpl oyee Birth Date (yyyy-Mvidd)"/>
<s:submit/>
</s:fornmp
</ di v>
</ body>
</htm >

The Confirmation.jsp page in Listing 7.19 shows how to display the adminld property
as well as the properties of the employee property.

Listing 7.19. The Confirmation.jsp page

<Yg@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title>Enpl oyee Detail s</title>

<style type="text/css">@nport url (css/main.css);</style>

</ head>

<body>

<div id="global" style="w dt h: 350px" >
Admin Id: <s:property val ue="admni nld"/>
<h4>Enpl oyee Created: </ h4>
<s: property val ue="enpl oyee. firstNane"/>
<s:property val ue="enpl oyee. | ast Nanme"/ >
(<s:date nanme="enpl oyee. bi rt hDat e"

format ="MW dd, yyyy"/>)

</ di v>

</ body>

</htm >

Last but not least, the birthDate property of the Employee class must be configured to

use the MyDateConverter converter. Listing 7.20 shows the Admin-
conversion.properties file that registers MyDateConverter for birthDate.

Listing 7.20. The Admin-conversion.properties file

enpl oyee. bi rt hDat e=app07d. converter. MyDat eConvert er

To test this application, direct your browser here:

http://1 ocal host: 8080/ app07d/ Adm nl. acti on

Working with Collections

Struts also allows you to populate objects in a Collection. Normally, you would want to do
this for faster data entry. Instead of adding one employee at a time as we did in app07d,
appO07e enables multiple employees to be added at the same time.

The directory structure of appO7e is shown in Figure 7.10 and the action declarations in
Listing 7.21.

Figure 7.10. appO7e directory structure

Ijj- appl7e
R
=l-[= isp
|=| Adrmin.jsp
|=| Adminlb.jsp
|=| Confirmation, jsp
= [WEE-INF
== rlasses
=l app07e
=|-[= converter
{.l__,\:; MyDateConverter, class
Ty Admin. class
Admin-conversion, properties
Ty Emplayee. class
Employee-conversion, properties
|=| struts,xmi
+-[= lib

| web,xml

=l

Listing 7.21. The action declaration

<package nanme="app07e" extends="struts-defaul t">
<action nanme="Adm nl">
<resul t>/jsp/Adm n.jsp</result>
</ action>
<action name="Adni n2" cl ass="app07e. Adm n">
<result nanme="input">/jsp/Adm n.jsp</result>
<result nanme="success">/jsp/ Confirmation.jsp</result>
</ action>
<action name="Adni nlb">
<resul t>/jsp/ Adnmi nlb.jsp</resul t>
</ action>
</ package>

The Adminl action displays the form for entering two employees and Admin2 inserts the
employees to the database and displays the added data. The Adminlb action is additional
and allows any number of employees. Adminlb will be discussed at the end of this section.

The Admin class and the Employee class are given in Listing 7.22 and Listing 7.23,
respectively. Note that the Admin class contains an employee property that is of
Collection type.

Listing 7.22. The Admin class

package appO7e;
import java.util.Collection;
i mport com opensynphony. xwor k2. Acti onSupport;

public class Admin extends ActionSupport {
private Coll ection enpl oyees;
public Collection getEnployees() {
return enpl oyees;
}

public void set Enpl oyees(Col | ecti on enpl oyees) {
thi s. enpl oyees = enpl oyees;
}

Listing 7.23. The Employee class

package appO7e;
i mport java.util.Date;

public class Enpl oyee {
private String firstNane;
private String |astNaneg;
private Date birthDate;

/'l getters and setters not shown

public String toString() {
return firstNanme + " " + | ast Nane;
}

The Admin.jsp page in Listing 7.24 contains a form that allows you to enter two
employees. The first employee will become the first element of the Collection employees
property in the Admin action. It is denoted by employees [0], and the second employee is
employees [1]. Consequently, the textfield tag mapped to the lastName property of the
first employee has its name property assigned employees[0].lastName.

Listing 7.24. The Admin.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Add Enpl oyees</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;

</styl e>

</ head>

<body>

<di v id="gl obal" styl e="wi dth: 450px" >

<h4>Add Enpl oyees</ h4>
<s:fielderror/>
<s:formthenme="sinple" action="Adm n2">
<t abl e>
<tr>
<t h>First Nane</th>
<t h>Last Nane</th>
<th>Birth Date</th>
</[tr>
<tr>
<td><s:textfield name="enpl oyees[0].firstNanme"/></td>
<td><s:textfield name="enpl oyees[0]. | ast Nane"/></td>
<td><s:textfield name="enpl oyees[0].birthDate"/></td>
</tr>
<tr>
<td><s:textfield name="enpl oyees[1].firstNane"/></td>
<td><s:textfield name="enpl oyees[1] .| ast Nane"/></td>
<td><s:textfield name="enpl oyees[1].birthDate"/></td>
</[tr>
<tr>
<td col span="3"><s: subm t/></td>
</[tr>
</t abl e>
</s:fornme
</ div>
</ body>
</htm >

The Confirmation.jsp page, shown in Listing 7.25, uses the iterator tag to iterate over
the employees property in the Admin action. It also employs the date tag to format the
birthdates.

Listing 7.25. The Confirmation.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Confirmation</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dth: 350px" >
<h4>Enpl oyee Created: </ h4>

<t abl e>
<s:iterator val ue="enpl oyees">
<tr>
<td><s: property val ue="firstNanme"/>
<s:property val ue="1 ast Nane"/ >
(<s:date nanme="birthDate" format="MW dd, yyyy"/>)
</td>
</tr>
</s:iterator>
</tabl e>

</ di v>

<s: debug/ >
</ body>
</htnm >

You can test this example by directing your browser to this URL.

http://1 ocal host: 8080/ app07e/ Adm nl. acti on

Figure 7.11 shows the form.

Figure 7.11. Adding multiple employees at the same time
[View full size image]

A Add Employees - Microsoft Internet Explorer E|@|E|
 Fle Edi View Favortes Tools Help -
! Address E] http:flacalhost:8080)app07efAdming .action v Eds

Add Employees

First Name Last Name Birth Date
Michell Hurwitz '|2000-8-9 |
'Brian ||Grazer |/1999-4-4 |

Ié:l Done tj Local intranst

Go ahead and add data to the form and submit it. Figure 7.12 shows the data displayed.

Figure 7.12. Displaying added employees

. : : : = |
‘2 Confirmation - Microsoft Internet Explorer |._|FE|[E|
File Edit Wiew Favorites Tools Help ;1.'

: Address !@ http: fflocalhosk: 8080/ app07e) &dmin2, action; jsessic Vl =0

2.3

Employee Created:

Michell Hurwitz (&ug 09, 2000}
Brian Grazer (Apr 04, 1999) —

[£

@ Dane H Local intranet

Being able to add two employees is great, but you probably want more. The rest of the
section discusses how get more flexibility.

Instead of hardcoding the text fields for employees as we did in the Admin.jsp page, we
use an iterator tag to dynamically build text fields. For example, to create four sets of
fields, you need an iterator tag with four elements like this.

<s:iterator value="new int[4]" status="stat">

Or, better still, you can pass a count request parameter to the URL and use the value to
build the iterator:

new i nt [#paraneters. count[0]]

Note that the [O] is necessary because parameters always returns an array of Strings,
not a String.

Here are the tags that build text fields on the fly. You can find them in the Adminlb.jsp
page in appO7e.

<s:iterator value="new int[#parameters.count[0]]" status="stat">
<tr>
<td><s:textfield
name="%"' enpl oyees["' +#stat.index+].firstNanme'}"/></td>
<td><s:textfield
nane="9%"' enpl oyees[' +#stat.index+'].lastNane' }"/></td>
<td><s:textfield
nane="%"' enpl oyees|["' +#stat.index+'].birthDate'}"/></td>
</tr>
</s:iterator>

Invoke the action by using this URL, embedding a count request parameter.

http://1 ocal host: 8080/ app07e/ Admi nlb. acti on?count =n

where n is the number of rows you want created. You can now enter as many employees as
you want in one go.

Working with Maps

Most of the times you'll probably be happy with populating objects in a Collection. In some
rare cases, however, you might need to populate objects in a Map. Even though it's harder,
it's something Struts will happily do for you too, as you can see in the appO7f application.
As usual, | begin by presenting the directory structure of the application. It is shown in

Figure 7.13.

Figure 7.13. appO7f directory structure

Tjj- appo7f
+ [Cos
== jsp
=| Admin, jsp
=| Confirmation, jsp
| [Z= WEB-IMNF
== classes
== app7f
=== converter
J.Jl__.'“'., MyDateConwverter class
J.jl_ﬁ, Admin.class
E] Admin-conversion. properties
J.jl_ﬁ, Emploves,class
E] Emplovee-conwversion, properties
=| struks,=ml
+-[= lib

| web.xml

The action declarations, shown in Listing 7.26, are similar to those in appO7e. Adminil

displays a multiple record entry form, Admin2 displays the entered data, and Adminlb
can be used to add any number of employees.

Listing 7.26. The action declaration

<package name="app07f" extends="struts-default">
<action nanme="Adm nl">
<resul t>/jsp/ Adm n.jsp</resul t>
</ action>
<action name="Adni n2" class="app07f. Adm n">
<result nanme="input">/jsp/Adm n.jsp</result>
<result nanme="success">/jsp/ Confirmation.jsp</result>
</ action>
<action nane="Adm nlb">
<resul t>/jsp/ Adnmi nlb.jsp</result>
</action>
</ package>

The Admin class is given in Listing 7.27. Note that the employees property is a Map.
The Employee class is presented in Listing 7.28 and is a template for employees.

Listing 7.27. The Admin class

package appO7f;
i mport java.util.Map;
i mport com opensynphony. xwor k2. Acti onSupport;
public class Admin extends ActionSupport {
private Map enpl oyees;
private String[] userNaneg;

/1l getters and setters not shown

Listing 7.28. The Employee class

package appO7f;
i mport java.util.Date;
public class Enployee {
private String firstNane;
private String |astNane;
private Date birthDate;
public String toString() {
return firstName + " " + | ast Nane;

/1l getters and setters not shown

To populate a Map property, which employees is, you need to tell Struts what class to

instantiate for each entry. The Admin-conversion.properties file in Listing 7.29is a
field-based configuration file that indicates that every element of the employees property
is an instance of appO7f.Employee and that it should create a new Map if employees is
null.

Listing 7.29. The Admin-conversion.properties file

El enment _enpl oyees=app07f. Enpl oyee
Createl fNul | _enpl oyees=true

On top of that, we want to use a date converter for the birthDate property in Employee.
Listing 7.30 shows the field-based configuration file for the Employee class.

Listing 7.30. The Employee-conversion.properties file

bi rt hDat e=app07f. converter. MyDat eConvert er

The Admin.jsp page in Listing 7.31 contains a form for entering two employees,
employees['user0'].lastName indicates the lastName property of the entry in the
employees Map whose key is userO.

Listing 7.31. The Admin.jsp page

<U@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<titl e>Add Enpl oyees</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;
}

</styl e>
</ head>
<body>
<di v id="gl obal" style="wi dth: 450px" >
<h4>Add Enpl oyees</ h4>
<s:fielderror/>
<s:formthenme="sinple" action="Adm n2">
<t abl e>
<tr>
<t h>First Nane</th>
<t h>Last Nane</th>
<th>Birth Date</th>
</tr>
<tr>
<td><s:textfield name="enpl oyees[' userQ'].firstNane"/></td>
<td><s:textfield name="enpl oyees[' userQ']. | ast Nane"/></td>
<td><s:textfield nane="enpl oyees[' user0'].birthDate"/></td>
</tr>
<tr>
<td><s:textfield name="enpl oyees[' userl'].firstNane"/></td>
<td><s:textfield name="enpl oyees[' userl'].|ast Nane"/></td>
<td><s:textfield nane="enpl oyees['userl'].birthDate"/></td>
</tr>
<tr>
<td col span="3"><s: subm t/></td>
</tr>
</ tabl e>

</s:forne
</ di v>
</ body>
</htn >

Listing 7.32 shows the Confirmation.jsp page that displays entered data by iterating
over the employees Map.

Listing 7.32. The Confirmation.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htnl >
<head>
<title>Confirmation</title>
<style type="text/css">@nport url (css/nmain.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 350px" >
<h4>Enpl oyees Creat ed: </ h4>

<s:iterator val ue="enpl oyees. keySet ()" var="key" status="stat">
<s:property val ue="#key"/>:
<s:property val ue="enpl oyees[#key] . first Nane"/>
<s:property val ue="enpl oyees|[#key] . | ast Nane"/ >

</s:iterator>
</ ul >
</ di v>
</ body>
</htm >

To test the application, direct your browser here:

http://1 ocal host: 8080/ app07f/ Admi nl. acti on

You will see a form like the one in Figure 7.14. Enter values in the text fields and submit
the form, and you will see the entered data displayed, as shown in Figure 7.15.

Figure 7.14. Populating a Map
[View full size image]

3 Add Employees - Microsoft Internet Explorer E|@[gl
File Edit Yiew Fgvortes Tooks Help v
! Address g‘l hitp: flocalhost: 2080 app07 FAdrminl .actian v EY co

Add Employees

First Mame Last Name Birth Date
Conan '|0'Brien '[1963-0418 |
| Jay '|Leno | [1950-04-28) |

I.{l Dare % Local inkranet

Figure 7.15. Displaying a Map's elements

File Edit ‘Wiew Favarites Tools Help

2 Confirmation - Microsoft Internet Explorer Z §|E|

: Address |@ http: fflocalhost : 8080/ app07F | Adming. action; isessionid V| 50

Employees Created:

e Userd: Conan O'Brien
* Lserl: Jay Leno

@ Dane ‘ﬂ Local intranet

To have a form for entering n employees, use the technique described in appO7e.

Summary

Struts performs type conversions when populating action properties. When a conversion
fails, Struts also displays an error message so that the user knows how to correct the input.
You've learned in this chapter how to override the error message.

Sometimes default type conversions are not sufficient. For example, if you have a complex
object or you want to use a different format than the default, you need to write custom
converters. This chapter has also shown how to write various custom converters and
configure them.

Chapter 8. Input Validation

A robust web application must ensure that user input is valid. For instance, you may want to
make sure that user information entered in a form will only be stored in the database if the
selected password is at least n characters long and the birth date is a date that is no later
than today's date. Struts makes input validation easy by providing built-in validators that
are based on the XWork Validation Framework. Using these validators does not require
programming. Instead, you declare in an XML file how a validator should work. Among the
things to declare are what field needs to be validated and what message to send to the
browser if a validation fails.

In more complex scenarios, built-in validators can help little and you have to write code to
validate input. This is called programmatic validation and, along with built-in validators, is
discussed in this chapter.

Validator Overview

There are two types of validators, field validators and plain validators (non-field validators).
A field validator is associated with a form field and works by verifying a value before the
value is assigned to an action property. Most bundled validators are field validators. A plain
validator is not associated with a field and is used to test if a certain condition has been
met. The validation interceptor, which is part of the default stack, is responsible for loading
and executing registered validators.

Using a validator requires these three steps:

1. Determine the action whose input is to be validated.

2. Writeavalidator configuration file. The file name must follow one of these two
patterns:

90

ActionCl ass-val i dati on. xni
Acti onCl ass-al i as-validation.xm

The first pattern is more common. However, since an action class can be used by
multiple actions, there are cases whereby you only want to apply validation on certain
actions. For example, the UserAction class may be used with User_create and
User_edit actions. If both actions are to be validated using the same rules, you can
simply declare the rulesin a UserAction-vaidation.xml file. However, if User_create
and User_edit use different validation rules, you must create two validator
configuration files, UserAction-User_create-validation.xml and UserAction-
User_edit-validation.xml.

3. Determine where the user should be forwarded to when validation fails by defining a

<result name="input"> element in the struts.xml file. Normally, the value of the result
element is the same JSP that contains the validated form.

Note on Validator Registration

All bundled validators are registered by default and can be used without you having to
worry about registration. Registration becomes an issue if you're using a custom validator.
If this is the case, read the section "Writing Custom Validators" later in this chapter.

Validator Configuration

The task of configuring validators centers around writing validator configuration files, which
are XML documents that must comply with the XWork validator DTD.

A validator configuration file always starts with this DOCTYPE statement.

<! DOCTYPE val i dators PUBLIC
"-// QpenSynphony Group//XWrk Validator 1.0.2//EN
"http://ww. opensynphony. conf xwor k/ xwor k-val i dator-1.0. 2. dtd">

The root element of a validator configuration file is validators. <validators> may have any
number of field and validator elements. A field element represents a form field to which one
or more field validators will be applied. A validator element represents a plain validator.
Here is the skeleton of a typical validator configuration file.

<! DOCTYPE val i dators PUBLIC

"-/ 1 OpenSynphony G oup// XWrk Validator 1.0.2//EN

"http://ww. opensynphony. conf xwor k/ xwor k-val i dator-1.0. 2. dtd">
<val i dat or s>

<field nane="...">
</fiéid>

<field name="...">
<Ifield>

<val i dator type="...">

</val i dat or >
<val i dator type="...">

</val i dat or >

</val i dat or s>

The name attribute in a field element specifies the form field to be validated.

You can apply any number of validators to a form field by nesting field-validator elements
within the field element. For instance, the following field element indicates that the
userEmail field must be validated by required and email validators.

<field nane="user Emai | ">
<field-validator type="required">
</field-validator>
<field-validator type="emil">
</field-validator>

</field>

A field-validator element must have a type attribute, which points to a validator. In
addition, it can have a short-circuit attribute. The value of short-circuit is either true or false
(default). A value of true indicates that if the current validator fails, the next validators for
the same field will not be executed. For example, in the configuration below, if the required
validator fails, the email validator will not be executed.

<field nanme="user Emai |l ">
<field-validator type="required" short-circuit="true">
</field-validator>
<field-validator type="emil">
</field-validator>
</field>

You can pass parameters to a validator by nesting param elements within the field-validator
element. You can also define a validation error message by using the message element
within the field-validator element. As an example, this stringlength field validator receives
two parameters, minLength and maxLength, and the error message that must be displayed
when validation fails.

<field-validator type="stringlength">
<par am nane="ni nLengt h" >6</ par an»
<par am nanme="naxLengt h" >14</ par an
<nessage>
User nane nust be between 6 and 14 characters | ong
</ nessage>
</field-validator>

A field-validator element can have zero or more param element and at most one message
element.

The validator element is used to represent a plain validator. It can also contain multiple
param element and a message element. For example, the following validator element
dictates that the max field must be greater than the min field or validation will fail.

<val i dat or type="expression">
<par am nanme="expressi on" >
max > mn
</ par an®
<nessage>
Maxi mum t enperature nust be greater than M ninmum tenperature
</ message>
</val i dat or >

Like field-validator, the validator element must have a type attribute and may have a short-
circuit attribute.

Bundled Validators

Struts comes with these built-in validators.

required validator.
requiredstring validator
int validator

date validator
expression validator
fieldexpression validator
email validator

url validator

visitor validator
conversion validator
stringlength validator
regex validator

Each of the validators is discussed in a separate section below.
required Validator

This validator makes sure that a field value is not null. An empty string is not null and
therefore will not raise an exception.

For instance, the RequiredTestAction class in Listing 8.1 has two properties,
userName and password, and employs a validator configuration file presented in Listing

8.2.

Listing 8.1. The RequiredTestAction class

package app08a;

i mport com opensynphony. xwor k2. Acti onSupport ;

public class RequiredTest Acti on extends ActionSupport {
private String user Nane;
private String password,
/1l getters and setters not shown

Listing 8.2. The RequiredTestAction-validation.xml file

<! DOCTYPE val i dators PUBLI C
"- /1 OpenSynphony G oup//XWrk Validator 1.0.2//EN
"http://ww. opensynphony. com xwor k/ xwor k- val i dator-1.0. 2. dtd">

<val i dat or s>
<fi el d name="user Nane" >
<field-validator type="required">
<message>Pl ease enter a user nane</ nessage>
</field-validator>
</field>
<fi el d name="password">
<field-validator type="required">
<nessage>Pl ease enter a password</nessage>
</field-validator>
</field>
</val i dat or s>

When you submit a form to RequiredTestAction, two fields are required. Listing 8.3
shows the JSP used to demonstrate the required validator. The userName textfield tag
has been commented out to trigger the validator.

Listing 8.3. The Required.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<ht m >
<head>
<title>required Validator Example</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or: red;
}

</styl e>
</ head>
<body>
<di v id="gl obal" styl e="wi dth: 350px" >
<h3>Ent er user nanme and passwor d</h3>
<s:fielderror/>
<s:form acti on="Requi red2">
<% - <s:textfield name="user Nane" | abel ="User Nane"/>
--%
<s: password nanme="password" | abel =" Password"/>
<s:subnit/>

</s:forne
</ di v>
</ body>
</htn >

You can use this URL to display the page:

http://1 ocal host: 8080/ app08a/ Requi red2. acti on

Figure 8.1 shows the form after a failed validation. It is rejected since the userName
field is missing.

Figure 8.1. The required validator

‘2 required Validator Example - Microsoft Internet E... |Z||E|[z|
"

File Edit Wiew Favarites Tools Help

: Address IiEj http: fflocalhost: 3080/ appO8a/Required? , action; jsessiol V| Go

Enter user name and password

¢ Please enter a user name

Password: | |

I@ Cone ‘:! Local intranet

requiredstring validator

The requiredstring validator ensures a field value is not null and not empty. It has a trim
parameter that by default has a value of true. If trim is true, the validated field will be
trimmed prior to validation. If trim is false, the value of the validated field will not be

trimmed. The trim parameter is described in Table 8.1.

Table 8.1. requiredstring validator parameter

Name, Data Description
Type

trim |boolean |Indicates whether or not trailing spaces will be trimmed prior to
validation.

With trim true, a field that contains only spaces will fail to be validated.

The following example validates the fields associated with the properties of the
RequiredStringTestAction class in Listing 8.4. The validation configuration file in
Listing 8.5 assigns the requiredstring validator to the userName and password fields.

Listing 8.4. The RequiredStringTestAction class

package app08a;

i mport com opensynphony. xwor k2. Act i onSupport;

public class RequiredStringTestAction extends ActionSupport {
private String user Nane;
private String password;
/1 getters and setters del eted

Listing 8.5. The RequiredStringTestAction-validation.xml file

<! DOCTYPE val i dators PUBLIC
"- /1 OQpenSynphony G oup//XWrk Validator 1.0.2//EN
“http://ww. opensynphony. coni xwor k/ xwor k- val i dator-1. 0. 2. dtd">

<val i dat or s>
<field nane="user Nane" >
<field-validator type="requiredstring">
<param name="tri m' >t r ue</ par anr
<message>Pl ease enter a user nane</ nmessage>
</field-validator>
</field>
<fi el d name="password">
<field-validator type="requiredstring">
<param nane="tri ni' >f al se</ par an»
<nessage>Pl ease enter a password</nessage>
</field-validator>
</field>
</val i dat or s>

Note that the requiredstring validator for the userName has its trim parameter set to true,
which means a space or spaces do not qualify. The RequiredString.jsp page in Listing
8.6 shows the form for this example.

Listing 8.6. The RequiredString.jsp page

<U@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>requiredstring Validator Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;
}

</styl e>
</ head>
<body>
<div id="global" style="w dth: 350px" >
<h3>Ent er user nane and password</h3>
<s:form acti on="Requi redStri ng2">
<s:textfield nane="user Nane" | abel ="User Nane"/>
<s: password nanme="password" | abel ="Password"/>
<s:subnit/>
</s:fornmp
</ di v>
</ body>
</htm >

To test this example, direct your browser to this URL:

http://1 ocal host: 8080/ app08a/ Requi redStringl. acti on

Submitting the form without first entering values to the fields will result in the form being
returned.

Figure 8.2. Using requiredstring

2 requiredstring Validator Example - Microsoft Intern... |;||E|

File Edit ‘Wiew Favaoritkes Tools Help

: Address I@ http: fflocalhost: 8080/ app08a/RequiredString2 . ackion v| G0

3
-

L

Enter user name and password

Please enter a user name

User Name: | |
Please enter a password
Password: | |
@ Dore ‘ﬂ Local intranet

stringlength Validator

You use stringlength to validate that a non-empty field value is of a certain length. You
specify the minimum and maximum lengths through the minLength and maxLength

parameters. The complete list of parameters is given in Table 8.2.

Table 8.2. stringlength validator parameters

Name Data Description
Type
minLength |int The maximum length allowed. If this parameter is not present,
there will be no maximum length restriction for the associated
field.
maxLength|int The minimum length allowed for the associated field. If this

restriction for the field.

parameter is not present, there will be no minimum length

Table 8.2. stringlength validator parameters

Name Data Description
Type
trim boolean |Indicates whether or not trailing spaces will be trimmed prior to
validation.

For example, the StringLengthTestAction class in Listing 8.7 defines two properties,
userName and password. A user name must be between six to fourteen characters long
and the stringlength validator is used to ensure this. The validator configuration file for this

example is presented in Listing 8.8. The StringLength.jsp page in Listing 8.9 shows
the form whose field is mapped to the userName property.

Listing 8.7. The StringLengthTestAction class

package app08a;

i mport com opensynphony. xwor k2. Acti onSupport;

public class StringlLengthTestAction extends ActionSupport {
private String userNane;
private String password;
/'l getters and setters del eted

Listing 8.8. The StringLengthTestAction-validation.xml file

<! DOCTYPE val i dators PUBLIC
"- /1 OpenSynphony G oup//XWrk Validator 1.0.2//EN
“http://ww. opensynphony. coni xwor k/ xwor k- val i dator-1. 0. 2. dtd">

<val i dat or s>
<fi el d name="user Nane" >
<field-validator type="stringlength">
<par am nanme="ni nLengt h" >6</ par an®
<par am nanme="naxLengt h" >14</ par an»
<nessage>
User nane must be between 6 and 14 characters | ong
</ nessage>
</field-validator>
</field>
</val i dat or s>

Listing 8.9. The StringLength.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title>stringlength Validator Exanple</title>

<style type="text/css">@nport url (css/main.css);</style>

<styl e>

.errorMessage {
col or:red;

}

</styl e>

</ head>

<body>

<div id="global" style="w dt h: 480px" >
<h3>Sel ect a user nane</ h3>
<s:form action="StringLength2">
<s:textfield nane="user Nane"
| abel =" User Nane (6-14 characters)"/>
<s:submt/>
</s:fornmpe
</ div>
</ body>
</htm >

To test this example, direct your browser to this URL:

http://1 ocal host: 8080/ app08a/ Stri ngLengt hl. acti on

Figure 8.3 shows the form.

Figure 8.3. Using stringlength

= | stringlength Validator Example - Microsoft Internet Explorer El@|g|
Fle Edt View Favorbes Tools Help r
- Address | @] hitp: {flocalhost: 8050 {app0SajStringLengtha. action v B

Select a user name

User name must be between 6 and 14 characters long
User Mame (6-14 characters): dafd '

#jﬂcm =) "'ﬂ.i.e-cali'ltrmet

int VValidator

The int validator checks if a field value can be converted into an int and, if the min and max
parameters are used, if its value falls within the specified range. The int validator's

parameters are listed in Table 8.3.

Table 8.3. int validator parameters

Name Data Description
Type
min |int The maximum value allowed. If this parameter is not present, there's

no maximum value.

max |int The minimum value allowed. If this parameter is not present, there's no
minimum value.

As an example, consider the IntTestAction class in Listing 8.10. It exposes one
property, year, which is an int representing the year part of a date.

Listing 8.10. The IntTestAction class

package app08a;
i mport com opensynphony. xwor k2. Acti onSupport;
public class IntTestAction extends ActionSupport {
private int year;
/1 getter and setter not shown

The validator configuration file in Listing 8.11 guarantees that any year value submitted
to an IntTestAction object must be between 1990 and 2009 (inclusive).

Listing 8.11. The IntTestAction-validation.xml file

<! DOCTYPE val i dators PUBLIC
"-// OQpenSynphony G oup//XWork Validator 1.0.2//EN
"http://ww. opensynphony. coni xwor k/ xwor k- val i dator-1.0. 2. dtd">

<val i dat or s>
<field nanme="year">
<field-validator type="int">
<par am nanme="m n" >1990</ par an®
<par am nanme="nax" >2009</ par an®
<nessage>Year nust be between 1990 and 2009</ nessage>
</field-validator>
</field>
</val i dat or s>

The Int.jsp page in Listing 8.12 shows a form with a textfield tag named year. Upon
the form submit, the validator will kick in to make sure the value of year is within the
prescribed range.

Listing 8.12. The Int.jsp page

<U@taglib prefix="s" uri="/struts-tags" %

<ht ml >

<head>

<title>nt Validator Exanple</title>

<style type="text/css">@nport url(css/main.css);</style>

<styl e>

.errorMessage {
col or:red;

</styl e>

</ head>

<body>

<div id="global" style="w dt h: 350px" >
<h3>Enter a year</h3>
<s:formaction="Int2">
<s:textfield nane="year" | abel ="Year (1990-2009)"/>
<s:submit/>
</s:form
</ di v>
</ body>

</htm >

Direct your browser to this URL to test the int validator.

http://1 ocal host: 8080/ app08a/ I nt1. action

You will see the form as shown in Figure 8.14.

Figure 8.4. Using the int validator

A int Validator Example - Microsoft Internet Explo... |:||E|E|
ﬁ:

: Address |@ http: filocalhost: 3080) app0SalInt 1, ackion V| G0

File Edit Wew Favorites Tools Help

Enter a year

Year (1990-2009): | |

@ Dane ‘ﬂ Local intranet

date Validator

This validator checks if a specified date field falls within a certain range. Table 8.4 lists all
possible parameters of the date validator.

Table 8.4. date validator parameters

Name Data Description
Type
max |date The maximum value allowed. If this parameter is not present, there will

be no maximum value.

min |date The minimum value allowed. If this parameter is not present, there will
be no minimum value.

Note

The date pattern used to validate a date is dependant on the current locale.

For example, the DateTestAction class in Listing 8.13 is used to test the date validator.

The DateTestAction-validation.xml configuration file in Listing 8.14 assigns the date
validator to the birthDate field.

Listing 8.13. The DateTestAction class

package appO08a;
i mport java.util.Date;
i mport com opensynphony. xwor k2. Acti onSupport ;
public class DateTest Acti on extends ActionSupport ({
private Date birthDate;
/'l getter and setter del eted

Listing 8.14. The DateTestAction-validation.xml file

<! DOCTYPE val i dators PUBLIC
"-// OpenSynphony G oup//XWrk Validator 1.0.2//EN
"“http://ww. opensynphony. conf xwor k/ xwor k- val i dator-1. 0. 2. dtd">

<val i dat or s>
<field nane="birthDate">
<field-validator type="date">
<par am nanme="nmax">1/ 1/ 2000</ par an
<message>
You nmust have been born before the year 2000 to register
</ message>
</field-validator>
</field>
</val i dat or s>

The configuration file specifies that the year value must be before January 1, 2000. The
date pattern used here is US_en.

The Date.jsp page in Listing 8.15 contains a form that submits the birthDate field to
the DateTestAction action.

Listing 8.15. The Date.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title>date Validator Example</title>

<style type="text/css">@nport url (css/main.css);</style>

<styl e>

.errorMessage {
col or:red;

}

</styl e>

</ head>

<body>

<div id="global" style="w dt h: 350px" >
<h3>Ent er your birthdate</h3>
<s:form action="Dat e2">
<s:textfield nane="birthDate" |abel="Birth Date"/>
<s:submt/>
</s:fornp
</ di v>
</ body>
</htm >

To test the date validator, direct your browser to this URL:

http://1 ocal host: 8080/ app08a/ Dat el. acti on

The form will be shown in your browser and will look like that in Figure 8.5.

Figure 8.5. Using the date validator

A date Validator Example - Microsoft Internet Exp... |Z||E|[‘)__(|
-

Fil= Edit View Faworites Tools Help i}

. Address |5§| http: i flocalhost: 3050/ app0&a/Datel . ackion V| G0

Enter your birthdate

Birth Date: | |
Ié:l Dane ‘;1! Local intranet

email Validator

The email validator can be used to check if a String evaluates to an email address. This
validator uses the Java Regular Expression APl and use the following pattern:

"\\b(~[_A-Za-z0-9-] +(\\. [_A- Za-z0-9-]+) * @[A- Za- z0- 9-]) +(\\ . [A- Za- z0- O-
14 *((\\. [A-Za-2z0-9]1{2,})] (\\. [A Za-z0-9] {2, }\\.[A-Za-z0-9]{2,})) $)\\ b"

This means an email can start with any combination of letters and numbers that is followed
by any number of periods and letters and numbers. It must have a @ character followed by
a valid host name.

As an example, the EmailTestAction class in Listing 8.16 defines an email property
that will be validated using the email validator. The validator configuration file is given in

Listing 8.17 and the JSP that contains a form with the corresponding field in printed in
Listing 8.18.

Listing 8.16. The EmailTestAction class

package app08a;

i mport com opensynphony. xwor k2. Acti onSupport;

public class Email Test Acti on extends Acti onSupport {
private String email;
/lgetter and setter not shown

Listing 8.17. The EmailTestAction-validation.xml file

<! DOCTYPE val i dators PUBLIC
"-// OpenSynphony G oup//XWrk Validator 1.0.2//EN
"“http://ww. opensynphony. conf xwor k/ xwor k- val i dator-1. 0. 2. dtd">

<val i dat or s>
<field name="enmil ">
<field-validator type="emil">
<nmessage>l nval i d enmai |l </ nessage>
</field-validator>
</field>
</val i dat or s>

Listing 8.18. The Email.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>enail Validator Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;

</styl e>
</ head>
<body>
<div id="global" style="w dt h: 350px" >
<h3>Ent er your email </ h3>
<s:formaction="Email 2">
<s:textfield name="enmmi|" |abel ="Email"/>
<s:submt/>
</s:fornme
</ di v>
</ body>
</htm >

To test the email validator, direct your browser to this URL:

http://1 ocal host: 8080/ app08a/ Enai | 1. acti on

Figure 8.6 shows the form that contains a textfield tag named email.

Figure 8.6. Using the email validator

A email Validator Example - Microsoft Internet Ex... |Z||E|[‘)__(|
-

File Edit Wew Favorites Tools Help i}

: Address |5§| http: filocalhost: 3050) app0Sa/Emnaill . ackion V| G0

Enter your email

Email: | |

Ié:l Dane ‘;1! Local intranet

url VValidator

The url validator can be used to check if a String qualifies as a valid URL. The validator
does it work by trying to create a java.net.URL object using the String. If no exception is
thrown during the process, validation is successful.

The following are examples of valid URLs:

http://ww. googl e. com
https://hotmail.com
ftp://yahoo.com
file:///C /datal/ V3. doc

This one is invalid because there is no protocol.

j ava.com

As an example, consider the UrlTestAction class in Listing 8.19 has a url property that
will be validated using the url validator. The validation configuration file is given in Listing

8.20.

Listing 8.19. The UrlTestAction class

package app08a;
i mport com opensynphony. xwor k2. Acti onSupport ;
public class Ul TestActi on extends ActionSupport {
private String url;
/1 getter and setter not shown

Listing 8.20. The UrlTestAction-validation.xml file

<! DOCTYPE val i dators PUBLIC
"- /1 OpenSynphony G oup//XWrk Validator 1.0.2//EN
"http://ww. opensynphony. com xwor k/ xwor k- val i dator-1.0. 2. dtd">
<val i dat or s>
<field name="url ">
<field-validator type="url">
<message>l nval i d URL</ nessage>
</field-validator>
</field>
</ val i dat or s>

The Url.jsp page in Listing 8.21 contains a form with a textfield tag named url.

Listing 8.21. The Url.jsp page

<U@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>url Validator Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;
}

</styl e>
</ head>
<body>
<di v id="gl obal" style="w dth: 350px" >
<h3>What is your website?</h3>
<s:formaction="Url2">
<s:textfield name="url" | abel ="URL" size="40"/>
<s:submt/>
</s:fornp
</ di v>
</ body>
</htm >

To test this example, direct your browser here.

http://1 ocal host: 8080/ app08a/ Url 1. acti on

Figure 8.7 shows the form.

Figure 8.7. Using the url validator

A url Validator Example - Microsoft Internet Explo... |Z||E|f')__(|
e

File Edit Wiew Fawvorites Tools Help

: §
: Address |5§| http: filocalhost: 2080) app0SalUr 1. action V| G0

What is your website?

URL: | |
I;é:l Done ‘:«j Local intranet

regex Validator

This validator checks if a field value matches the specified regular expression pattern. Its

parameters are listed in Table 8.5. See the documentation for the
java.lang.regex.Pattern class for more details on Java regular expression patterns.

Table 8.5. regex validator parameters

Name Data Description
Type

expression®* |String The regular expression pattern to match.

caseSensitive|boolean |Indicates whether or not the matching should be done in a case
sensitive way. The default value is true.

trim boolean |Indicates whether or not the field should be trimmed prior to
validation. The default value is true.

expression and fieldexpression Validators

The expression and fieldexpression validators are used to validate a field against an OGNL

expression, expression and fieldexpression are similar, except that the former is not a field
validator whereas the latter is. The other difference is a failed validation of the expression

validator will generate an action error, fieldexpression will raise a field error on a failed

validation. The parameter for these validators is given in Table 8.6.

Table 8.6. expression and fieldexpression validators' parameter

Name |Data Type Description

expression* |String The OGNL expression that governs the validation process.

There are two examples in this section. The first one deals with the expression validator, the
second with the fieldexpression validator.

The expression Validator Example

The ExpressionTestAction class in LiSting 8.22 has two properties, min and max, that

will be used in the OGNL expression of an expression validator instance. Listing 8.23
shows a validator configuration file that uses the expression validator and specifies that the

value of the max property must be greater than the value of min. Listing 8.24 shows a
JSP with a form with two fields.

Listing 8.22. The ExpressionTestAction class

package app08a;

i mport com opensynphony. xwor k2. Acti onSupport;

public class ExpressionTestActi on extends ActionSupport {
private int mn;
private int max;
/1l getters and setters not shown

Listing 8.23. The ExpressionTestAction-validation.xml file

<! DOCTYPE val i dators PUBLIC
"-// OpenSynphony G oup//XWrk Validator 1.0.2//EN
"“http://ww. opensynphony. conf xwor k/ xwor k- val i dat or-1. 0. 2. dtd">

<val i dat or s>
<val i dat or type="expression">
<par am nane="expr essi on" >
max > mn
</ par an®
<nmessage>
Maxi mum t enper at ure nust be greater than M ni num
tenperature
</ message>
</val i dat or >
</val i dat or s>

Listing 8.24. The Expression.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>expression Validator Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;

</styl e>
</ head>
<body>
<div id="global" style="w dt h: 400px" >
<s:actionerror/>
<h3>Ent er the mi ni rum and maxi mum t enper at ur es</ h3>
<s:form acti on="Expressi on2">
<s:textfield nane="m n" | abel ="M ni num t enperature"/>
<s:textfield nane="max" | abel =" Maxi mum t enperature"/>
<s:subnit/>
</s:fornp
</ di v>
</ body>
</htm >

To test this example, direct your browser to this URL.

http://1 ocal host: 8080/ app08a/ Expressi onl. acti on

You'll see a form like the one in Figure 8.8. You can only submit the form successfully if
you entered integers in the input fields and the value of min was less than the value of
max.

Figure 8.8. Using expression

2l expression Validator Example - Microsoft Internet Expl... |Z||E|fz|
e

File Edit Wiew Favorites Tools Help b

. Address |SE| htkp:fflocalhost: 3080) app0dalExpressionz , ackion; jsessionid= v| G0

e Maximum temperature must be greater than Minimum
temperature

Enter the minimum and maximum
temperatures

Minimum temperature: 100 |

Maximum temperature: 98 |

I@ Ciore ‘ﬂ Local inkranet

The fieldexpression Validator Example

The FieldExpressionTestAction class in Listing 8.25 defines two properties, min and
max, that will have to meet a certain criteria, namely min must be less than max. The

validator configuration file in Listing 8.26 specifies an OGNL expression for the
fieldexpression validator. Listing 8.27 shows the JSP used in this example.

Listing 8.25. The FieldExpressionTestAction class

package app08a;

i mport com opensynphony. xwor k2. Acti onSupport ;

public class Fiel dExpressi onTest Acti on extends ActionSupport {
private int mn;
private int max;
/1l getters and setters not shown

Listing 8.26. The FieldExpressionTestAction-validation.xml file

<! DOCTYPE val i dators PUBLIC
"-// OpenSynphony G oup//XWrk Validator 1.0.2//EN
"“http://ww. opensynphony. conf xwor k/ xwor k- val i dator-1. 0. 2. dtd">
<val i dat or s>
<field name="max">
<field-validator type="fiel dexpression">
<par am nanme="expr essi on" >
max > mn
</ par anp
<nessage>
Maxi mum t enper at ure nust be greater than M ni num
tenperature
</ message>
</field-validator>
</field>
</val i dat or s>

Listing 8.27. The FieldExpression.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>fieldexpression Validator Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;
}

</styl e>
</ head>
<body>
<di v id="gl obal" style="wi dth: 400px">
<h3>Ent er the mi ni rum and maxi mum t enper at ur es</ h3>
<s:form action="Fi el dExpressi on2">
<s:textfield nane="m n" | abel ="M ni num tenperature"/>
<s:textfield nane="max" | abel =" Maxi mum t enperature"/>
<s:subnit/>
</s:fornp
</ di v>
</ body>
</htm >

Test this example by directing your browser here:

http://1 ocal host: 8080/ app08a/ Fi el dExpr essi onl. acti on

Figure 8.9 shows the fieldexpression validator in action.

Figure 8.9. Using fieldvalidator

Al fieldexpression Validator Example - Microsoft Internet ... |Z||E|rz|
o

File Edit Wiew Favorites Tools Help

i
: Address !SE http: fflocalhosk: 8080/ app08a)FieldExpression2, action v| et

Enter the minimum and maximum
temperatures

Minimum ternperature: [100 |

Maximum temperature must be greater than
Minimum temperature

Maxirmum ag |
termperature; '
@ Ciore ‘:g Local inkranet

conversion Validator

The conversion validator tells you if the type conversion for an action property generated a
conversion error. The validator also lets you add a custom message on top of the default
conversion error message. Here is the default message for a conversion error:

Invalid field value for field "fiel dNane".

With the conversion validator, you can add another message:

Invalid field value for field "fiel dNane".
[Your custom nessage]

For example, the ConversionTestAction class in Listing 8.28 has one property, age,

which is an int. The validator configuration file in Listing 8.29 configures the conversion
validator for the age field and adds an error message for a failed conversion.

Listing 8.28. The ConversionTestAction class

package app08a;

i mport com opensynphony. xwor k2. Acti onSupport ;

public class ConversionTestActi on extends ActionSupport {
private int age;
/1 getter and setter deleted

Listing 8.29. The ConversionTestAction-validation.xml file

<! DOCTYPE val i dators PUBLIC
"- /1 OQpenSynphony G oup//XWrk Validator 1.0.2//EN
"http://ww. opensynphony. com xwor k/ xwor k- val i dator-1.0. 2. dtd">

<val i dat or s>
<field nane="age" >
<field-validator type="conversion">
<nmessage>
An age nust be an integer.
</ message>
</field-validator>
</field>
</val i dat or s>

The Conversion.jsp page in Listing 8.30 contains a form with a field mapped to the age
property.

Listing 8.30. The Conversion.jsp page

<U@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>conversion Validator Exanple</title>
<style type="text/css">@nport url(css/main.css);</style>
<styl e>
.errorMessage {
col or:red;
}

</style>
</ head>
<body>
<div id="global" style="w dt h: 350px" >
<h3>Ent er your age</h3>
<s:form acti on="Conversi on2" >
<s:textfield nane="age" | abel ="Age"/>
<s:submt/>
</s:fornp
</ di v>
</ body>
</htm >

You can test this example by directing your browser to this URL.

http://1 ocal host: 8080/ app08a/ Conver si onl. acti on

Figure 8.10 shows the conversion validator in action. There are two error messages
displayed, the default one and the one that you added using the conversion validator.

Figure 8.10. The conversion validator in action

2 conversion Validator Example - Microsoft Inter... I:”E”‘):ﬂ
File Edit \Miew Favorites Tools Help ","

. 1
: Address !@ http:jflocalhost:2080/app0SaCorversion2. ackion; % | G0

Enter your age

Invalid field value for field "age".
An age must be an integer,

Age: |hello |
Iﬂj Daone %J Local inkranet

visitor Validator

The visitor validator introduces some level of reusability, enabling you to use the same
validator configuration file with more than one action. Consider this scenario.

Suppose you have an action class (say, Customer) that has an address property of type
Address, which in turn has five properties (streetName, streetNumber, city, state, and
zipCode). To validate the zipCode property in an Address object that is a property of the
Customer action class, you would write this field element in a Customer-validation.xml
file.

<field nanme="addr ess. zi pCode" >
<field-validator type="requiredstring">
<nessage>Zi p Code nust not be enpty</nessage>
</field-validator>
</field>

Note how OGNL makes it possible to reference a complex object?

Suppose also that you have an Employee action class that uses Address as a property
type. If the address property of Employee requires the same validation rules as the
address property in Customer, you would have an Employee-validation.xml file that is
an exact copy of the Customer-validation.xml file.

This is redundant and the visitor validator can help you isolate identical validation rules into
a file. Every time you need to use the validation rules, you simply need to reference the file.
In this example, you would isolate the validation rules for the Address class into an

Address-validation.xml file. Then, in your Customer-validation.xml file you would write

<field nane="address">
<field-validator type="visitor">
<nessage>Addr ess: </ nessage>
</field-validator>
</field>

This field element says, for the address property, use the validation file that comes with
the property type (Address). In other words, Struts would use the Address-
validation.xml file for validating the address property. If you use Address in multiple
action classes, you don't need to write the same validation rules in every validator
configuration file for each action.

Another feature of the visitor validator is the use of context. If one of the actions that use
Address needs other validation rules than the ones specified the Address-validation.xml
file, you can create a new validator configuration file just for that action. The new validator
configuration file would be named:

Addr ess-cont ext -val i dati on. xm

Here, context is the alias of the action that needs specific validation rules for the Address
class. If the AddEmployee action needed special validation rules for its address property,
you would have this file:

Addr ess- AddEnpl oyee-val i dati on. xm

That's not all. If the context name is different from the action alias, for example, if the

AddManager action also requires the validation rules in the Address-AddEmployee-
validaton.xml instead of the ones in Address-validation.xml, you can tell the visitor
validator to look at a different context by writing this field element.

<field nane="address">
<field-validator type="visitor">
<par am nane="cont ext " >speci fi c</ par an>
<nessage>Addr ess: </nessage>
</field-validator>
</field>

This indicates to the visitor validator that to validate the address property, it should use
Address-specific-validation.xml and not Address-AddManager-validation.xml.

Now let's look at the three sample applications (appO8b, app08c, and app08d) that
illustrate the use of the visitor validator. The app0O8b application shows a Customer action
that has an address property of type Address and uses a conventional way to validate
address. The app08c application features the same Customer and Address classes, but
use the visitor validator to validate the address property. The app08d application employs
the visitor validator and uses a different context.

Validating a Complext Object (app08b)

In this example, a Customer class has an address property of type Address. It is shown
how you can validate a complex object with the help of OGNL expressions. The example is

given in app08b and its directory structure is shown in Figure 8.11. The Customer
class and the Address class are shown in Listings 8.31 and 8.32, respectively.

Figure 8.11. app08b directory structure

Ijj- app0ab
+- 2L 55
== jsp

|=| Custamer.jsp
|=| Thanks.jsp
—-[== WEB-IMF
== classes
—-[-= app0db

{.l__[}. Address, class

J.Jl__.“.; Cuskomer . class
|=| Customer-validation, xml

|=| struks.xml

+-[= lib

|=| web.xml

Listing 8.31. The Customer class

package app08b;
i mport com opensynphony. xwor k2. Acti onSupport;
public class Custoner extends ActionSupport {
private String firstNane;
private String |astNaneg;
private Address address;
/1l getters and setter not shown

Listing 8.32. The Address class

package app08b;

public class Address {
private String streetName;
private String streetNunber;
private String city;
private String state;
private String zi pCode;
/1l getters and setters not shown

To validate the Customer action class, use the Customer-validation.xml file in Listing

8.33. Note that you can specify the validators for the properties in the Address object
here.

Listing 8.33. The Customer-validation.xml

<! DOCTYPE val i dators PUBLIC
"-// QpenSynphony G oup//XWrk Validator 1.0.2//EN
"“http://ww. opensynphony. conf xwor k/ xwor k- val i dat or-1. 0. 2. dtd">

<val i dat or s>
<field nane="firstNanme">
<field-validator type="requiredstring">
<message>Fi rst Name nust not be enpty</nessage>
</field-validator>
</field>
<field nane="I| ast Nane" >
<field-validator type="requiredstring">
<message>Last Nane nust not be enpty</nessage>
</field-validator>
</field>
<field nane="address. street Nane" >
<field-validator type="requiredstring">
<nmessage>Street Nane nust not be enpty</nessage>
</field-validator>
</field>
<field nane="address. street Nunber" >
<field-validator type="requiredstring">
<nmessage>Street Nunmber must not be enpty</nmessage>
</field-validator>
</field>
<field nane="address.city">
<field-validator type="requiredstring">
<nmessage>City nust not be enpty</nessage>
</field-validator>
</field>
<field nane="address.state">
<field-validator type="requiredstring">
<nessage>St ate nust not be enpty</nessage>
</field-validator>
</field>
<fi el d nane="addr ess. zi pCode" >
<field-validator type="requiredstring">

<nessage>Zi p Code nust not be enpty</nmessage>
</field-validator>
</field>
</val i dat or s>

The Customer.jsp page in Listing 8.34 contains a form with fields that map to the
properties in the Customer action.

Listing 8.34. The Customer.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Add Custonmer</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;
}

</styl e>
</ head>
<body>
<div id="global" style="w dt h: 350px" >
<h3>Ent er custoner detail s</h3>
<s:form acti on="Cust oner 2" >
<s:textfield nanme="firstNane" | abel ="First Nane"/>
<s:textfield nanme="I| ast Nanme" | abel ="Last Nanme"/>
<s:textfield nane="address. street Nane" | abel ="Street Nane"/>
<s:textfield nanme="address. street Nunber"
| abel =" Street Nunber"/>
<s:textfield nane="address.city" |label="City"/>
<s:textfield nane="address.state" |abel="State"/>
<s:textfield nane="address. zi pCode" | abel ="Zi p Code"/>
<s:submt/>
</s:forne
</ di v>
</ body>
</htm >

Test this example by directing your browser to this URL.

http://1 ocal host: 8080/ app08b/ Cust oner 1. acti on

The form is shown in Figure 8.12.

Figure 8.12. Validations for a complex object

‘2 Add Customer - Microsoft Internet Explorer |Z||-E”')ZJ

i

@ http:/flocalhost: 8080/ app0sh/Customer 2. action; jsessic V| Go

File Edit ‘jew Fawvarites Tools Help

. Address

Enter customer details

First Name must not be empty
First Name: | |
Last Name must not be empty
Last Name: | |
Street Name must not be empty
Street Name: | |
Street Mumber must not be empty
Street Number: | |
City must not be empty
City: | |

State must not be empty
State: |
Zip Code must not be empty
Zip Code: | |

.El Dane ‘-J Local intranek

Using the visitor Validator (app08c)

app08c, whose directory structure is shown in Figure 8.13, is similar to app08b. It has
Address and Customer classes and a Customer.jsp page that are identical to the ones in
app08b. However, the validation rules for the Address class have been moved to an

Admin-validation.xml file (See Listing 8.35).

Figure 8.13. app08c directory structure

ID"J- applsc
[E;- £S5
Bl isp
i e 5| Cuskomer,jsp

i e |5 Thanks.jsp

= WEB-INF

EI[Eb classes

= (= app0sc

: Address. class

o |Z] Bddress-validation. <ml

< fh Customer. class

|;E| Cuskormer-validation. xml
w2 skruks,eml

(= lib

w =] webxml

Listing 8.35. The Address-validation.xml file

<! DOCTYPE val i dators PUBLIC
"- /1 OpenSynphony G oup//XWrk Validator 1.0.2//EN

“http://ww. opensynphony. coni xwor k/ xwor k- val i dator-1. 0. 2. dtd">

<val i dat or s>
<field nane="street Nane">
<field-validator type="requiredstring">
<nmessage>Street Nanme nust not be enpty</nessage>
</field-validator>
</field>
<field nane="street Nunmber" >
<field-validator type="requiredstring">

<nmessage>Street Nunber must not be enpty</nmessage>

</field-validator>
</field>
<field name="city">
<field-validator type="requiredstring">
<nmessage>City must not be enpty</nessage>
</field-validator>
</field>
<field nane="state">
<field-validator type="requiredstring">
<nessage>State nust not be enpty</nessage>
</field-validator>
</field>
<field nanme="zi pCode" >
<field-validator type="requiredstring">
<nessage>Zi p Code nmust not be enpty</nmessage>
</field-validator>
</field>
</val i dat or s>

The Customer-validation.xml file (shown in Listing 8.36) is now shorter, since the
validation rules for the address property are no longer here. Instead, it uses the visitor
validator to point to the Address-validation.xml file.

Listing 8.36. The Customer-validation.xml file

<! DOCTYPE val i dators PUBLIC
"- /1 OQpenSynphony G oup//XWrk Validator 1.0.2//EN
"http://ww. opensynphony. com xwor k/ xwor k- val i dator-1.0. 2. dtd">

<val i dat or s>
<field name="first Nanme" >
<field-validator type="requiredstring">
<message>Fi rst Name nust not be enpty</nessage>
</field-validator>
</field>
<field name="I| ast Nane" >
<field-validator type="requiredstring">
<message>Last Nane nust not be enpty</nessage>
</field-validator>
</field>
<field name="address" >
<field-validator type="visitor">
<nmessage>Address: </ message>
</field-validator>
</field>
</val i dat or s>

Test this example by directing your browser here.

http://1 ocal host: 8080/ app08c/ Cust oner 1. acti on

Using the visitor Validator in different contexts (app08d)

app08d is similar to appO8c and its directory structure is shown in Figure 8.14. Its
Address-validation.xml and Customer-validation.xml files are the same as the ones in
appO08c.

Figure 8.14. app08d directory structure

Iéj- app0sd
S
== jsp
|=| Custamer. jsp
|=| Employes.jsp
|=| Thanks.jsp
|=| Thanksz.jsp
2= WEE-IMF
== classes

tuh Address.class
|=| Address-specific-validation, xml
1= Address-validation, il
J.,l__,‘., Cuskomer, class
|=| Customer-validation, zml
J.p__.‘:, Emplovees, class
|=| Employee-validation,=ml
|=| skruts.=m
+-[= lib

| web, xmil

==l

In addition to the Customer class, there is an Employee class that has an address
property. There is a new validator configuration file for the Address class, Address-

specific-validation.xml, which is shown in Listing 8.37.

Listing 8.37. The Address-specific-validation.xml file

<! DOCTYPE val i dators PUBLIC
"- /1 OpenSynphony G oup//XWrk Validator 1.0.2//EN
"http://ww. opensynphony. com xwor k/ xwor k- val i dator-1.0. 2. dtd">

<val i dat or s>
<field nanme="zi pCode" >
<field-validator type="regex">
<par am name="expr essi on">
<I'[CDATA[\d\d\d\d\d]] >
</ par an®
<nessage>
Invalid zip code or invalid format
</ nessage>
</field-validator>
</field>
</val i dat or s>

The address property in Employee uses the validation rules in Address-specific-
validation.xml, and not the ones in Address-validation.xml. This is indicated in the
Employee-validation.xml file in LiSting 8.38. The context parameter instructs Struts
to use the specific context.

Listing 8.38. The Employee-validation.xml file

<! DOCTYPE val i dators PUBLIC
"-// OpenSynphony G oup//XWrk Validator 1.0.2//EN
"“http://ww. opensynphony. conf xwor k/ xwor k- val i dat or-1. 0. 2. dtd">

<val i dat or s>
<field nane="firstName">
<field-validator type="requiredstring">
<nmessage>First Nane nust not be enpty</nessage>
</field-validator>
</field>
<field nane="I| ast Nane" >
<field-validator type="requiredstring">
<nessage>Last Name nust not be enpty</nessage>
</field-validator>
</field>
<field nane="address">
<field-validator type="visitor">
<par am nane="cont ext " >speci fi c</ par an>
<nmessage>Addr ess: </nessage>
</field-validator>
</field>
</val i dat or s>

To test this application, direct your browser to this URL:

http://1ocal host: 8080/ app08d/ Enpl oyeel. acti on

Writing Custom Validators

Using the bundled validators does not require you to know anything about the validators'
underlying classes. If you wish to write your own validator, however, you need to know both

the classes and the registration mechanism for Struts validators.

A validator must implement the Validator interface that is part of the

com.opensymphony.xwork2.validator package. Figure 8.15 shows this interface, its

subinterface, and implementing classes.

Figure 8.15. The Validator interface and supporting types

<finterfaces> <<interfaces>>
ShoiCircuitableV alidator Walidator
AN FAVAY
L. . :
|
ValidatorSupport <<interface>>
7 FieldValidator

Exprassion'/alidator FieldValidatorSuppor
FAN
RequiredFieldValidator RequiredSiringUalidatnlI Du:-ubleHangeFieldUalidatnlI
FieldExprazzion'validator I VigitorFiald\V slid ator URLValidator | tringlengthFisldvalidate

| I l

RepopulateConwersionErorFieldWValidatarSupport | | AbstractRangeValidator RegExValidator

i 1 i

ConwversionEmroffalidatar I IntRangeFieldWValidator | | DateRangeFieldValidator I EmailValidator

The package names in Figure 8.15 have been omitted. The Validator, FieldValidator,
and ShortCircuitableValidator interfaces belong to the
com.opensymphony.xwork?2.validator package. The rest are part of the
com.opensymphony.xwork?2.validator.validators package. The Validator interface is

printed in Listing 8.39.

Listing 8.39. The Validator interface

package com opensynphony. xwor k2. val i dat or;
public interface Validator {
voi d set Def aul t Message(String nessage);
String get Def aul t Message();
String get Message(hj ect object);
voi d set MessageKey(String key);
String get MessageKey();
voi d setValidatorType(String type);
String getValidatorType();

voi d set Val i dat or Cont ext (Val i dat or Cont ext val i dat or Cont ext) ;
Val i dat or Cont ext get Val i dat or Cont ext () ;
voi d val i date(Obj ect object) throws Validati onExcepti on;

The Validation interceptor is responsible for loading and executing validators. After it loads a
validator, the interceptor will call the validator's setValidatorContext method and pass the
current ValidatorContext, which will allow access to the current action. The interceptor will
then invoke the validate method, passing the object to be validated. The validate method
is the method you need to override when writing a custom validator.

It is much easier to extend one of the convenience classes ValidatorSupport and
FieldVvalidatorSupport than to implement Validator. Extend ValidatorSupport if you're
creating a plain validator. Subclass FieldValidatorSupport if you're writing a field
validator. If you design your validator to be able to accept a parameter, add a property for
the parameter too. For example, if your validator allows a minValue parameter, you need
the getter and setter for the minValue property.

The ValidatorSupport class adds several methods, of which three are convenience
methods you can call from your validation class.

protected java.l ang. Obj ect getFi el dVal ue(java.lang. String nane,
java. |l ang. Obj ect object) throws Validati onException

Returns the field value named name from object.
protected voi d addActi onError(java.l ang. Obj ect acti onError)

Adds an action error.

protected voi d addFi el dError(java.lang. String propertyNane,
j ava.l ang. Obj ect object)

Adds a field error.

From your validate method you call the addActionError when a plain validator fails or the
addFieldError when a field validator fails.

FieldValidatorSupport extends ValidatorSupport and adds two properties,
propertyType and fieldName.

Listing 8.40 shows the RequiredStringValidator class, the underlying class for the
requiredstring validator.

Listing 8.40. The RequiredStringValidator class

package com opensynphony. xwor k2. val i dat or. val i dat or s;
i mport com opensynphony. xwor k2. val i dat or. Val i dati onExcepti on;
public class RequiredStringValidator extends FieldValidatorSupport {
private bool ean doTrim = true;
public void setTrin(boolean trim {
doTrim=trim

public boolean getTrin() {
return doTrim
}

public void validate(Object object) throws Validati onException {
String fieldName = getFi el dNane();
hj ect value = this.getFieldvalue(fieldNane, object);

if (!(value instanceof String)) {
addFi el dError (fi el dNane, object);
} else {
String s = (String) val ue;

if (doTrim {
s =s.trim);
}

if (s.length() == 0) {
addFi el dError (fi el dNane, object);
}

The requiredstring validator can accept a trim parameter, therefore its underlying class
needs to have a trim property. The setter will be called by the validation interceptor if a
trim parameter is passed to the validator.

The validate method does the validation. If validation fails, this method must call the
addFieldError method.

Registration

As mentioned at the beginning of this chapter, bundled validators are already registered so
you don't need to register them before use. They are registered in the
com/opensymphony/xwork2/validator/validators/default.xml file (shown in

Listing 8.41), which is included in the xwork jar file. If you are using a custom or third
party validator, you need to register it in a validators.xml file deployed under WEB-
INF/classes or in the classpath.

Note

The Struts website maintains, at the time of writing, that if you have a validators.xml file
in your classpath, you must register all bundled validators in this file because Struts will not
load the default.xml file. My testing revealed otherwise. You can still use the bundled
validators without registering them in a validators.xml file.

Listing 8.41. The default.xml file

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE val i dators PUBLIC
"-// QpenSynphony G oup//XWrk Validator Config 1.0//EN"
"http://ww. opensynphony. conf xwor k/ xwor k- val i dat or-config-1.0.dtd">

<val i dat or s>
<val i dat or nane="required"
cl ass="com opensynphony. xwor k2. val i dat or. val i dat ors.
Requi r edFi el dval i dator"/ >
<val i dat or nane="requiredstring"
cl ass="com opensynphony. xwor k2. val i dat or . val i dat ors. Requi redStri ngVal i dat or"/
>
<val i dat or name="int"
cl ass="com opensynphony. xwor k2. val i dat or. val i dat or s. | nt RangeFi el dval i dat or"/ >
<val i dat or name="doubl e"
cl ass="com opensynphony. xwor k2. val i dat or . val i dat or s. Doubl eRangeFi el dVval i dat or
||/>
<val i dat or nanme="date"
cl ass="com opensynphony. xwor k2. val i dat or. val i dat or s. Dat eRangeFi el dval i dat or "/
>
<val i dat or nane="expressi on"
cl ass="com opensynphony. xwor k2. val i dat or . val i dat or s. Expr essi onVal i dator"/ >
<val i dat or nane="fi el dexpr essi on"
cl ass="com opensynphony. xwor k2. val i dat or. val i dat ors. Fi el dExpr essi onVal i dat or"
/>
<val i dat or name="enmail"
cl ass="com opensynphony. xwor k2. val i dat or. val i dat ors. Emai | Val i dat or"/ >
<val i dat or name="url"
cl ass="com opensynphony. xwor k2. val i dat or. val i dat ors. URLVal i dat or "/ >
<val i dat or name="visitor"
cl ass="com opensynphony. xwor k2. val i dat or. val i dators. VisitorFi el dval i dator"/>
<val i dat or name="conversi on"
cl ass="com opensynphony. xwor k2. val i dat or. val i dat ors. Conver si onError Fi el dval i d
ator"/>
<val i dat or nane="stri ngl engt h"
cl ass="com opensynphony. xwor k2. val i dat or . val i dat ors. St ri ngLengt hFi el dval i dat o
r/>
<val i dat or nane="regex"
cl ass="com opensynphony. xwor k2. val i dat or. val i dat or s. RegexFi el dval i dat or"/ >
</val i dat or s>

Example

The following example teaches you how to write a custom validator and register it. This
example showcases a strongpassword validator that checks the strength of a password. A
password is considered strong if it contains at least one digit, one lowercase character, and
one uppercase character. In addition, the validator can accept a minLength parameter that
the user can pass to set the minimum length of an acceptable password.

Figure 8.16 shows the directory structure of the application (app08e).
Figure 8.16. app08e directory structure

{5‘ appl&e
H]-[=L 55
== jsp
|Z| Thanks.jsp
|=| User.jsp
= [=- WEE-INF
-l rlasses
- applte
== walidakor
J.p__.‘:, StrongPasswordyalidator, class
J.p__.‘:, ser . class
|=| User-walidation.=ml
|=| struks. =l
|=| walidatars.=ml
+- = lib
|=| web.xml
The supporting class for strongpassword is the
appO08e.validator.StrongPasswordValidator class. This class extends the
FieldValidatorSupport class and is shown in Listing 8.42. The validate method uses

the isPasswordStrong method to test the strength of a password.

Listing 8.42. The StrongPasswordValidator class

package appO8e. vali dator;
i mport com opensynphony. xwor k2. val i dat or. Val i dati onExcepti on;
i mport com opensynphony. xwor k2. val i dat or. val i dat ors. Fi el dval i dat or Support ;

public class StrongPasswordVal i dator extends FieldVvalidatorSupport {
private int mnLength = -1;
public void setM nLength(int m nLength) {
this. mnLength = m nLengt h;

}

public int getMnLength() {
return m nLength;

}

public void validate(Ohject object) throws Validati onException {
String fieldNanme = getFi el dNane();
String value = (String) getFieldVal ue(fiel dNane, object);

if (value == null || value.length() == 0) {
/1l use a required validator for these
return;

}

if ((mnLength > -1) && (value.length() < minLength)) {
addFi el dError (fi el dNane, object);

} else if (!isPasswordStrong(value)) {
addFi el dError (fi el dNane, object);

}

}

private static final String GROUP_1
"abcdef ghi j kl mopqr st uvwxyz";
private static final String GROUP_2
" ABCDEFCHI J KLMNOPQRSTUVWKYZ" ;
private static final String GROUP_3 = "0123456789";
prot ect ed bool ean i sPasswordStrong(String password) {

bool ean okl = fal se;
bool ean ok2 = fal se;
bool ean ok3 = fal se;

int length = password. | ength();
for (int i =0; i <length; i++) {
if (okl && ok2 && ok3) {
br eak;
}
String character = password.substring(i, i + 1);

if (GROUP_1.contains(character)) {
okl = true;
conti nue;

}
if (GROUP_2.contains(character)) {

ok2 = true;
conti nue;

}
if (GROUP_3.contains(character)) {
ok3 = true;
}
}

return (okl & ok2 && ok3);

The validators.xml file in Listing 8.43 registers the strongpassword validator.

Listing 8.43. The validators.xml file

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE val i dators PUBLIC
"~/ QpenSynphony G oup//XWrk Validator Config 1.0//EN
“http://ww. opensynphony. coni xwor k/ xwor k- val i dat or-config-1.0.dtd">

<val i dat or s>
<val i dat or nane="strongpassword"
cl ass="app08e. val i dat or. St r ongPasswor dVal i dat or "/ >
</val i dat or s>

Now that you've registered your custom validator, you can use it the same way you would a
bundled validator. For example, the User class in Listing 8.44 has a password property
that can only be assighed a strong password. The User-validation.xml file in Listing
8.45 configures the validators for the User class.

Listing 8.44. The User class

package appO8e;
i mport com opensynphony. xwor k2. Act i onSupport ;
public class User extends ActionSupport {
private String userNane;
private String password;
/'l getters and setters not shown

Listing 8.45. The User-validation.xml file

<! DOCTYPE val i dators PUBLIC
"- 1/ OQpenSynphony G oup//XWork Validator 1.0.2//EN
"http://ww. opensynphony. conl xwor k/ xwor k- val i dator-1. 0. 2. dtd">

<val i dat or s>
<field nane="user Nane" >
<field-validator type="requiredstring">
<nessage>User Nane nust not be enpty</nessage>
</field-validator>
</field>
<field nane="password">
<field-validator type="requiredstring">
<nessage>Password nust not be enpty</nessage>
</field-validator>
</field>
<field nane="password">
<field-validator type="strongpassword">
<par am nanme="ni nLengt h" >8</ par an®
<nessage>
Password nust be at |east 8 characters |ong
and contains at |east one | ower case character,
one upper case character, and a digit.
</ nessage>
</field-validator>
</field>
</val i dat or s>

Listing 8.46. The User.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Sel ect user nane and password</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;
}

</styl e>
</ head>
<body>
<div id="global" style="w dt h: 350px" >
<h3>Pl ease sel ect your user nanme and password</h3>
<s:form action="User2">
<s:textfield nane="user Nane" | abel ="User Nane"/>
<s: password nane="password" | abel ="Password"/>
<s:submt/>
</s:fornmp
</ div>
</ body>
</htm >

The User.jsp page in Listing 8.47 features a form that accepts a user name and a
password. Direct your browser here to test this example.

http://1 ocal host: 8080/ app08e/ User 1. acti on

Figure 8.17 shows the strongpassword validator in action.

Figure 8.17. The strongpassword validator in action

‘A Select user name and password - Microsoft Intern... E|E|[z|
-

File Edit Wiew Favoribes Tools Help -

. Address !@ hktp: f flocalhost: 30807 app08e/User 2, action; jsessionid= Vi (0]

Please select your user name
and password

User Name: |dgoodhope |

Password must be at least 8
characters long and contains at least
one lower case character, one upper

case character, and a digit.

Password: | |
2] Dare % Local intranet

Programmatic Validation Using Validateable

So far we've looked at using and writing validators that can be used declaratively. In some
cases, validation rules are too complex to be specified in a declarative validation and you
need to write code for that. In other words, you need to perform programmatic validation.

Struts comes with the com.opensymphony.xwork2.Validateable interface that an action
class can implement to provide programmatic validation. There is only one method in this
interface, validate.

voi d val i date()

If an action class implements Validateable, Struts will call its validate method. You write
code that validates user input within this method. Since the ActionSupport class
implements this interface, you don't have to implement Validateable directly if your class
extends ActionSupport.

The appO08f application demonstrates how to write programmatic validation rules. The User

action (See Listing 8.47) overrides the validate method and adds a field error if the
userName value entered by the user is already in the userNames list.

Listing 8.47. The User class

package appO8f;
import java.util.ArraylList;
i mport java.util.List;
i mport com opensynphony. xwor k2. Acti onSupport;
public class User extends ActionSupport {
private String userNaneg;
private String password;
private static List<String> userNanes = new ArraylList<String>();
static {
user Nanes. add("harry");
user Nanes. add("sal l y");
}
/1l getters and setters not shown
public void validate() {
i f (userNanes. contai ns(userNane)) ({
addFi el dError ("user Nane",
"""+ user Nanme +

has been taken.");

Even when employing programmatic validation, you can still use the bundled validators. In
this example, the userName field is also "guarded" by a stringrequired validator, as shown

in the User-validation.xml file in Listing 8.48.

Listing 8.48. The User-validation.xml file

<! DOCTYPE val i dators PUBLIC
"-// QpenSynphony G oup//XWork Validator 1.0.2//EN
"“http://ww. opensynphony. conf xwor k/ xwor k- val i dat or-1. 0. 2. dtd">

<val i dat or s>
<field nane="user Nane" >
<field-validator type="requiredstring">
<nmessage>User Name nmust not be enpty</nessage>
</field-validator>
</field>
<field nane="password">
<field-validator type="requiredstring">
<nessage>Password must not be enpty</nmessage>
</field-validator>
</field>
</val i dat or s>

To test this example, direct your browser to this URL.

http://1 ocal host: 8080/ app08f/ User 1. acti on

Figure 8.18 shows the programmatic validator at work.

Figure 8.18. Programmatic validation

A Select user name and password - Microsoft In... |Z||E|r$__<|
.lr

File Edit Wiew Favaorites Tools Help i
: Address |$§| http: filocalhost: 3080/ app0af User2, ackion V| G0

Please select your user name
and password

‘harry' has been taken.
User Name: [harmy |
Password must not be empty

Password: | |
@ Done H Local intranet

Summary

Input validation is one of the features Struts offer to expedite web application development.
In fact, Struts comes with built-in validators that are available for use in most cases. As
you've learned in this chapter, you can also write custom validators to cater for validations
not already covered by any of the bundled validators. In addition, you can perform
programmatic validation in more complex situations.

Chapter 9. Message Handling and
Internationalization

Message handling is an important task in application development. For example, it is almost
always mandatory that text and messages be editable without source recompile. In

addition, nowadays it is often a requirement that an application be able to "speak” many
languages. A technique for developing applications that support multiple languages and data
formats without having to rewrite programming logic is called internationalization.
Internationalization is abbreviated i18n because the word starts with an i and ends with an
n, and there are 18 characters between the first i and the last n. In addition, localization is
a technique for adapting an internationalized application to support a specific locale. A locale
is a specific geographical, political, or cultural region. An operation that takes a locale into
consideration is said to be locale-sensitive. For example, displaying a date is locale-
sensitive because the date must be in the format used by the country or region of the user.
The 15th day of November 2005 is written as 11/15/2005 in the US, but printed as
15/11/2005 in Australia. Localization is abbreviated 110n because the word starts with an |
and ends with an n and there are 10 letters between the | and the n.

With internationalization, you can change visual text in an application quickly and easily.
Java has built-in supports for internationalization and Struts makes use of this feature and
has been designed from the outset to support easy message handling and
internationalization. For instance, the com.opensymphony.xwork2.ActionSupport class,

which was introduced in Chapter 3, "Actions and Results," has getText methods for
reading messages from a text file and selecting messages in the correct language. A custom
tag can display a localized message simply by calling one of these methods.

This chapter explains how to use Struts' support for internationalization and localization.
Two tags, text and i18n, are also discussed.

Note

Even if you're developing a monolingual site, you should take advantage of the Struts
internationalization support for better message handling.

Locales and Java Resource Bundles

A locale is a specific geographical, political, or cultural region. There are three main
components of a locale: language, country, and variant. The language is obviously the most
important part; however, sometimes the language itself is not sufficient to differentiate a
locale. For example, the German language is spoken in countries such as Germany and
Switzerland. However, the German language spoken in Switzerland is not exactly the same
as the one used in Germany. Therefore, it is necessary to specify the country of the
language. As another example, the English language used in the United States is slightly
different from that spoken in England. It's favor in the United States, but favour in
England.

The variant argument is a vendor- or browser-specific code. For example, you use WIN for
Windows, MAC for Macintosh, and POSIX for POSIX. If there are two variants, separate

them with an underscore, and put the most important one first. For example, a Traditional
Spanish collation might construct a locale with parameters for the language, the country,
and the variant as es, ES, Traditional_WIN, respectively.

The language code is a valid 1SO 639 language code. Table 9.1 displays some of the
country codes. The complete list can be found at

http://www.w3.org/WAI/ER/1G/ert/is0639.htm.

Table 9.1. Examples of ISO 639 language codes
Code Language

de German

el Greek

en English

es Spanish

fr French

hi Hindi

it Italian

ja Japanese

nl Dutch

pt Portuguese

ru Russian

zh Chinese

The country argument is also a valid 1SO code, which is a two-letter, uppercase code
specified in 1SO 3166. Table 9.2 lists some of the country codes in I1SO 3166. The
complete list can be found at http://userpage.chemie.fu-
berlin.de/diverse/doc/1SO_3166.html or

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-
code-lists/list-en1.html.

Table 9.2. Examples of ISO 3166 Country Codes
Country Code

Australia AU

Brazil BR
Canada CA

China CN

Egypt EG
France FR
Germany DE

India IN
Mexico MX
Switzerland CH
Taiwan T™W
United Kingdom GB
United States us

An internationalized application stores its textual elements in a separate properties file for
each locale. Each file contains key/value pairs, and each key uniquely identifies a locale-
specific object. Keys are always strings, and values can be strings or any other type of
object. For example, to support American English, German, and Chinese, you will have
three properties files, all with the same keys.

Here is the English version of the properties file. Note that it has two keys: greetings and
farewell:

greetings = Hello
farewel | = Goodbye

The German version would be as follows:

greetings = Hallo
farewell = Tschif

And the properties file for the Chinese language would be this:

greeti ngs=\u4f 60\ us97d
farewel | =\ u518d\ u89c1

Converting Chinese Characters (or Other
Language Special Characters) to Unicode

The following applies to all languages that have special characters. Chinese is
taken as an example.

In Chinese, the most common greeting is (represented by the Unicode codes
4f60 and 597d, respectively), and farewell is (represented by Unicode codes
518d and 89cl, respectively). Of course, no one remembers the Unicode code of
each Chinese character. Therefore, you create the .properties file in two steps:

1. Using your favorite Chinese text editor, create a text file like this:

65
greetings=
farewel | =

2. Convert the content of the text file into the Unicode representation.
Normally, a Chinese text editor has a feature for converting Chinese
characters into Unicode codes. You will get this end result.

65
greetings=\ u4f 60\ u597d
farewel | =\ u518d\ u89c1

This is the content of the properties file you use in your Java application.

Note

With Struts you don't need to know any more than writing properties files in multiple
languages. However, if interested, you may want to learn about the
java.util.ResourceBundle class and study how it selects and reads a properties file
specific to the user's locale.

Each of the properties files in an internationalized application must be named according to
this format.

basenane_| anguageCode_count ryCode

For example, if the base name is MyAction and you define three locales US-en, DE-de,
CN-zh, you would have these properties files:

e MyAction_en_US.properties
e MyAction_de_DE.properties
e MyAction_zh_CN.properties

Now, let's take a look at message resources in Struts.

Internationalization Support in Struts

Struts has a built-in support for internationalization and localization. You'll get most of this
support simply by extending the ActionSupport class. Inside the class is an
implementation of com.opensymphony.xwork2.TextProvider, an interface that provides
access to resource bundles and their underlying text messages. Calls to the getText
methods in ActionSupport are delegated to this TextProvider. Most of the time you don't
need to know anything about TextProvider.

Here are the more important overloads of getText.

public java.lang. String get Text(java.lang. String key)

Gets the message associated with the key and returns null if the message cannot be found.

public java.lang. String getText(java.lang. String key,
java.lang. String defaul t Val ue)

Gets the message associated with the key and returns the specified default value if the
message cannot be found.

public java.lang. String getText(java.lang. String key,
java.lang. String[] args)

Gets the message associated with the key and formats it using the specified arguments in
accordance with the rules defined in java.text.MessageFormat.

public java.lang. String getText(java.lang. String key, java.util.List
ar gs)

Gets the message associated with the key and formats it using the specified arguments in
accordance with the rules defined in java.text.MessageFormat.

public java.lang. String getText(java.lang. String key,
java.lang. String defaul tVal ue, java.lang. String[] args)

Gets the message associated with the key and formats it using the specified arguments in
accordance with the rules defined in java.text.MessageFormat. If the message cannot be
found, this method returns the specified default value.

public java.lang. String get Text(java.lang. String key,
java.lang. String defaul tVal ue, java.util.List args)

Gets the message associated with the key and formats it using the specified arguments in
accordance with the rules defined in java.text.MessageFormat. If the message cannot be
found, this method returns the specified default value.

When you call a getText method, it searches for the appropriate properties file in this
order.

1. The action class properties file, i.e. one whose basename is the same as the name of
the corresponding action class and located in the same directory as the action class.
For example, if the action class is app09a.Customer, the relevant file for the
default locale is Customer.properties in WEB-INF/classes/app09a.

2. The properties file for each interface that the action class implements. For example,
if the action class implements a Dummy interface, the default properties file that
corresponds to this interface is Dummy.properties.

3. The properties file for each of its parent class followed by each interface the parent
class implements. For instance, if the action class extends ActionSupport, the
ActionSupport.properties file will be used. If the message is not found, the search
moves up to the next parent in the hierarchy, up to java.lang.Object.

4. If the action class implements com.opensymphony.xwork2.ModelDriven, Struts
calls the getModel method and does a class hierarchy search for the class of the
model object. ModelDriven is explained in Chapter 10, "Model Driven and Prepare
Interceptors.”

5. The default package properties file. If the action class is app0O9a.Customer, the
default package ResourceBundle is package in app0O9a.

6. The package resource bundle in the next parent package.

7. Global resources

You can display a localized message using the property tag or the label attribute of a form
tag by calling getText. The syntax for calling it is

% get Text (' key')}

For example, to use a textfield tag to retrieve the message associated with key
customer.name, use this:

<s:textfield nane="nane" | abel ="9% get Text (' custoner.nane')}"/>

The following property tag prints a message associated with the key customer.contact.

<s:property val ue="9%get Text (' custoner.contact')}"/>

The following sample application shows how to use the message handling feature in a
monolingual application. It is shown here how easy it is to change messages across the
application by simply editing properties files.

The application centers around the Customer action class, which implements an interface
named Dummy. This interface does not define any method and is used to demonstrate the
order of properties file search.

The directory structure of the example (app09a) is shown in Figure 9.1.

Figure 9.1. app09a directory structure

Ijj- appl9a
+-[s
+--[~= images
== jsp
|=| Customer.jsp
(2= WEB-INF
== classes
-l app0%a
: Customet, class
- Customer, propetbies
: Dy class
: Durmmy , properties
package. properties
==& com
== opensymphony
== wworkz
ActionSupport, properties

== java
== o
Serializable. properties
|=| struks.<ml
+-[= lib

|=| web.xml
The Customer class is given in Listing 9.1 and the Customer.jsp page in Listing 9.2.

Listing 9.1. The Customer action class

package app09a;
i mport com opensynphony. xwor k2. Act i onSupport ;
public class Custoner extends ActionSupport inplenents Dummy {
private String nang;
private String contact;
private String address;
private String city;
private String state;
private String zi pCode;

/1l getters and setters not shown

Listing 9.2. The Customer.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Custoners</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 350px" >
<h4>Cust oner </ h4>
<s:fornp
<s:textfield nane="nane" | abel ="9% get Text (' custoner.nane')}"/>
<s:textfield nane="contact"
| abel =" 9% get Text (' customer.contact')}"/>
<s:textfield nane="address"
| abel =" 9% get Text (' customer. address')}"/>
<s:textfield nane="city" |abel ="%get Text (' custoner.city')}"/>
<s:textfield nane="zi pCode"
| abel =" 9% get Text (' customer. zi pCode', 'Zip Code')}"/>
<s:submt/>
</s:fornp
</ div>
</ body>
</htm >

You can test the application using this URL.

http://1 ocal host: 8080/ app09a/ Cust oner . acti on

You can experiment with the localized messages by editing the properties files.

The text Tag

The text tag is a data tag for rendering an internationalized message. It is equivalent to
calling getText from the property tag. The attributes of the text tag are given in Table

9.3.

Table 9.3. text tag attributes

Name Data Description
Type

name*|String The key of the message to be retrieved.

var String The name of the variable that references the value to pushed to the

stack context.

For example, the following text tag prints the message associated with the key greetings:

<s:text name="greetings"/>

If the var attribute is present, however, the message is not printed but pushed to the Value
Stack's context map. For instance, the following pushes the message associated with
greetings to the context map and creates a variable named msg that references the
message.

<s:text nane="greetings" id="nsg"/>

You can then use the property tag to access the message.

<s:text nanme="greetings" id="nsg"/>
<s:property val ue="#nsg"/>

You can pass parameters to a text tag. For example, if you have the following key in a
properties file

greetings=Hell o {0}

You can use this text tag to pass a parameter.
<s:text name="greetings">

<s: paranpVi sitor</s: paranp
</s:text>

The tag will print this message:

Hell o Visitor

A parameter can be a dynamic value too. For example, the following code passes the value
of the firstName property to the text tag.

<s:text nanme="greetings">
<s: paranp<s: property val ue="firstNane"/></s: paranp
</s:text>

The app09b application shows how to use the text tag in a multilingual site. Three
languages are supported: English (default), German, and Chinese.

Figure 9.2 shows the directory structure of app0O9b.
Figure 9.2. app09b directory structure

Téj- app0ob
+-[55
=l-[= isp
|=| Main.jsp
<= WEB-INF
== rlasses
—l-[-= app03b
Main_de.properties
Main_en.properties
Main_zh. properties
Main.class

|=| struks.zml

+- = lib

= web.xml

Note that three properties files correspond to the Main class. The properties files are given

in Listings 9.3 t0 9.5.

Listing 9.3. The Main_en.properties file

gr eet i ngs=\ u4f 60\ u597d {0}
farewel | =\ u518d\ u89cl

Listing 9.4. The Main_de.properties file

greetings=Hall o {0}
farewell=Tschif

Listing 9.5. The Main_zh.properties file

greeti ngs=\ u4f 60\ u597d {0}
farewel | =\ u518d\ u89c1

The Main class is shown in Listing 9.6 and the Main.jsp page in Listing 9.7.

Listing 9.6. The Main class

package app09b;
i mport com opensynphony. xwor k2. Acti onSupport ;
public class Miin extends ActionSupport {

}

Listing 9.7. The Main.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title> 18N</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>

<div id="global" style="w dt h: 350px" >

<s:text nane="greetings">
<s: paranmJon</s: par anr

</s:text>.

<s:text nanme="farewell"/>

</ di v>
</ body>
</htm >

To test this example, direct your browser to this URL:

http://1 ocal host: 8080/ app09b/ Mai n. acti on

Figure 9.3 shows the messages in German locale.

Figure 9.3. The German locale

2 118N - Microsoft Internet Explorer :

=

X
'!'r

: Address |@ http: [flocalhost: S080) app02b/Main. action V| Ela]

File Edit Wiew Fawvorites Tools Help

Hallo Jon, Tschil

@ Done ‘ﬂ Local intranet

The 118n Tag

The i18n tag loads a custom ResourceBundle. You may want to provide a custom
ResourceBundle for one of these reasons.

e You want to use a ListResourceBundle so that you can associate a key with a non-
String object.
e You wish to pre-process a key.

e The message comes from an unconventional source.

The tag falls back to the default resource bundle if the specified custom ResourceBundle
cannot be found.

The i18n tag has one attribute, name, which is described in Table 9.4.

Table 9.4. i18n tag attribute
Name Data Type Description

name (String The fully qualified Java class to load.

For example, the app09c application features two custom ResourceBundles that extend
ListResourceBundle, MyCustomResourceBundle and MyCustomResourceBundle_de.
The custom ResourceBundles are shown in Listings 9.8 and 9.9, respectively. These
ResourceBundles return one of two message arrays. If the current time is before 12 am, it
will return the first array. Otherwise, the second array will be returned. Therefore, the user
will get a different message depending on the current time.

Listing 9.8. The MyCustomResourceBundle class

package app09c. resour cebundl e;
i mport java.util.Cal endar;
i mport java.util.ListResourceBundl e;

public class MyCustonResourceBundl e extends ListResourceBundle {
public Qoject[][] getContents() {
i f (Cal endar. getlnstance().get(Cal endar. HOUR_OF_DAY) < 12) {
return contentsl;
} else {
return contents2;
}

static final Qoject[][] contentsl = {
{ "greetings", "Good norning {0}" },
{ "farewell", "Cood bye" } };

static final Qoject[][] contents2 = {
{ "greetings", "Hello {0}" },
{ "farewell", "CGood bye" } };

Listing 9.9. The MyCustomResourceBundle_de class

package app09c. resour cebundl e;
i mport java.util.Cal endar;
i mport java.util.ListResourceBundl e;
public class MyCust onResour ceBundl e_de extends ListResourceBundl e {
public Ooject[][] getContents() {
i f (Cal endar.getlnstance().get(Cal endar. HOUR_OF_DAY) < 12) {
return contentsl
} else {
return contents2
}
}

static final Qoject[][] contentsl = {
{ "greetings", "Guten Mrgen {0}" },
{ "farewell", "Tschip" } };

static final Ooject[][] contents2 = {
{ "greetings", "Hallo {0}" },
{ "farewell", "Tschip" } };

The Main.jsp page in Listing 9.10 uses an i18n tag to select a custom
ResourceBundle and employs two text tags to display the localized messages.

Listing 9.10. The Main.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title>l 18N</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>

<div id="global" style="w dt h: 350px" >

<s:i18n nane="app09c. resour cebundl e. MyCust onResour ceBundl| e" >
<s:text nane="greetings">
<s: paramrJon</ s: par anp
</s:text>.
<s:text name="farewel|"/>
</s:i18n>
</ di v>
</ body>
</htm >

You can test the application by directing your browser to this URL.

http://1 ocal host: 8080/ app09c/ Mai n. acti on

Manually Selecting A Resource Bundle

The ResourceBundle that gets picked up depends on the browser's locale. If you want to
let the user select one that is not browser-dependant, you can. You just need to pass a
request parameter request_locale. For example, the following request parameter indicates
to the server that the user wanted to be served in German language.

request | ocal e=de

The locale will be retained throughout the session.

As an example, the app09d application illustrates how you can create an application that
lets the user select a language. The actions in this application are declared in Listing

9.11.

Listing 9.11. The action declarations

<package name="app09d" extends="struts-default">
<action nane="lLanguage" >
<resul t >/ sp/ Language. j sp</resul t >
</ action>
<action nanme="Mi nl" cl ass="app09d. Mai n">
<resul t>/jsp/ Mainl.jsp</result>
</action>
<action nane="Mai n2" cl ass="app09d. Mai n" >
<resul t>/jsp/ Mai n2.jsp</resul t>
</ action>
</ package>

The first action, Language, displays the Language.jsp page (shown in Listing 9.12)
that shows two links that let the user select a language.

Listing 9.12. The Language.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<htn >

<head>

<title>Sel ect Language</title>

<style type="text/css">@nport url (css/nmain.css);</style>
</ head>

<body>

<div id="global" style="w dth: 350px" >

<s:url action="Minl" id="enUrl">

<s: param nanme="r equest _| ocal e">en</s: par anp
</s:url>
<s:url action="Minl" id="deUrl">

<s: param nane="request _| ocal e" >de</ s: par anp
</s:url>

<h3>Sel ect Language</ h3>

<s:a href="%enUrl}">English</s:a>
<s:a href="%deUrl}">Deutsch</s:a></1i>

</ di v>
</ body>
</htnm >

Selecting the first link invokes the Mainl action and passes the request_locale=en
request parameter to the server. Selecting the second link invokes Main2 and passes
request_locale=de. The Mainl.jsp and Main2.jsp pages, associated with actions Mainl

and Main2, are shown in Listing 9.13 and 9.14, respectively.

Listing 9.13. The Mainl.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>l 18N</title>
<style type="text/css">@nport url (css/main.css);</style>
<style type="text/css">
inmg {
bor der: none;

</styl e>
</ head>
<body>
<div id="global" style="w dt h: 350px" >
<s:text nanme="greetings">
<s: paranmJon</s: par anr
</s:text>
</ div>

<s:url action="Min2" id="url"/>

<s:a href="9%url}"><ing src="images/ next.png"/></s:a>
</ body>

</htm >

Listing 9.14. The Main2.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >

<head>

<title> 18N</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>

<div id="global" style="w dt h: 350px" >
<s:text nanme="farewell"/>

</ div>

</ body>

</htm >

To test the example, direct your browser to this URL:

http://1 ocal host: 8080/ app09d/ Language. acti on

You will see something similar to Figure 9.4.

Figure 9.4. Letting the user select a language

23 Select Language - Microsoft Internet Explorer |Z||E|[5__<|
File Edit Wiew Favorites Tools Help .'f

. Address |$E| https fflocalhost: 2080/ app09d/Language, action V| Go

Select Language

« English
s Deutsch

@ Cone ‘-;_4 Local inkranet

Summary

Message handling is one of the most important tasks in application development. Today
applications also often require that applications be able to display internationalized and
localized messages. Struts has been designed with i18n and 110n in mind, and the tags in
the Struts tag library support internationalized message handling.

Chapter 10. Model Driven and Prepare
Interceptors

This chapter explains the Model Driven and Prepare interceptors, two very important
interceptors that help with separating the action and the model. It starts with a discussion
of why separating the action and the model is a good idea and continues with two sample
applications that illustrate the roles of the interceptors.

Separating the Action and the Model

Web applications are normally multi-tiered. There are the presentation tier, the logic tier,
and the data tier. Communication between two tiers is conducted by invoking methods and
passing data in the form of transfer objects. Also known as a value object, a transfer object
is simple and has no methods. In fact, there is a pattern that governs the design and use of
transfer objects: the Data Transfer Object (DTO) pattern.

Struts resides mainly in the presentation tier and since you can write business logic in
Struts actions, you can argue that Struts encapsulates the logic tier too. In an enterprise
application, however, it is less often that you write business logic in action classes. Rather,
you will call methods in another tier from your action classes.

A Struts action has methods and properties and can definitely act as a transfer object.
However, is it really appropriate to send an action object to another tier?

The answer is no. An action class has methods that are useful only in the presentation tier.
What would an execute method that returns "success" do in an EJB container, for example?
Transferring an action object to another tier is not only awkward but could be dangerous
too.

Now, if you accept this, you'll acknowledge that there needs to be a clear separation
between the action and the model in an enterprise application that uses Struts as the front-
end. There will be action classes that don't represent model objects and whose functions are
limited to serve the presentation tier. The names of such action classes should end with
Action. Model classes, on the other hand, should have no suffix. An action class that
manages products should be called ProductAction whereas an instance of a Product class
should be used as a transfer object that encapsulates information about a product.

By now you've probably grown used to receiving the Struts service that maps form fields
with action properties. You'll probably ask, if you are to create a model that is not an
instance of the action class, how do you map form fields with the transfer object's
properties? The answer is by employing the Model Driven interceptor.

The Model Driven Interceptor

As mentioned in the preceding section, you often need to worry about a model that is
separate from an action class. If you have a ProductAction class that handles products,
you will have to think about creating and populating the model. The Model Driven
interceptor works on any action that implements the

com.opensymphony.xwork2.ModelDriven interface. This interface is shown in Listing

10.1.

Listing 10.1. The ModelDriven interface

package com opensynphony. xwor k2;

/**

* Model Driven Actions provide a nodel object to be pushed onto the
* ValueStack in addition to the Action itself, allow ng a FornBean
* type approach like Struts 1.

*/
public interface Mdel Driven<T> {

/**

* @eturn the nodel to be pushed onto the Val ueStack instead of

* the Action itself

*/

T get Model () ;
}

An action class that implements ModelDriven must override the getModel method. As an
example, the ProductAction class in Listing 10.2 implements ModelDriven and its
getModel method returns an instance of the Product class (given in Listing 10.3).

Listing 10.2. A ModelDriven action

public class ProductAction extends ActionSupport
i npl enents Model Driven {
public String execute() throws Exception {
return SUCCESS;

}

public Object getMdel () {
return new Product();

}

Listing 10.3. The Product class

public class Product {
private String product Nane;
private String description;
private float price;

/1l getters and setters not shown

When the user invokes the ProductAction action, the Model Driven interceptor will call its
getModel method on ProductAction and push the returned model (in this case, an
instance of Product) to the Value Stack. If the basic stack or the default stack has been
configured to kick in after the Model Driven interceptor, the Parameters interceptor will then
map form fields to the properties of the objects in the Value Stack. Since now the model
(the Product object) is at the top of the Value Stack, it will get populated. If a field does

not have a matching property in the model, the Param interceptor will try the next object in
the Value Stack. In this case, the ProductAction object will be used.

As an example, the appl0a application shows how you can separate an action and a model.
This simple application manages employees and comes with two actions:

¢ Employee_list that shows all employees in the system
¢ Employee_ create that is used to add a new employee

The action declarations for this application are given in Listing 10.4.

Listing 10.4. The struts.xml file

<package nanme="applOa" extends="struts-default">
<action nanme="Enpl oyee list" nethod="1list"
cl ass="applOa. Enpl oyeeActi on" >
<resul t >/ sp/ Enpl oyee. j sp</resul t>
</ action>
<action nane="Enpl oyee create" nethod="create"
cl ass="applOa. Enpl oyeeActi on" >
<result type="redirect-action">Enpl oyee |ist</result>
<result nanme="input">/jsp/ Enpl oyee.jsp</result>
</ action>
</ package>

As you can see in Listing 10.4, both actions are handled by the EmployeeAction class.
The list method is used to handle the Employee_ list action and the create method is for
creating a new employee.

The EmployeeAction class is shown in Listing 10.5.

Listing 10.5. The EmployeeAction class

package applOa;

i mport com opensynphony. xwor k2. Acti onSupport;
i mport com opensynphony. xwor k2. Model Dri ven;

i nport java.util.List;

public class Enpl oyeeActi on extends Acti onSupport
i mpl emrents Model Driven {

private Enpl oyee enpl oyee;
private List<Enployee> enpl oyees;

public Object getMdel () {
enpl oyee = new Enpl oyee();
return enpl oyee;

}

public List<Enpl oyee> get Enpl oyees() {
enpl oyees = Enpl oyeeManager . get Enpl oyees();
return enpl oyees;

}

publ i c Enpl oyee get Enpl oyee() {
return enpl oyee;

}

public void set Enpl oyee(Enpl oyee enpl oyee) {
thi s. enpl oyee = enpl oyee;
}

public void set Enpl oyees(Li st <Enpl oyee> enpl oyees) {
thi s. enpl oyees = enpl oyees;
}

public String list() {
enpl oyees = Enpl oyeeManager . get Enpl oyees();
return SUCCESS;
}
public String create() {
Enpl oyeeManager . cr eat e(enpl oyee) ;
return SUCCESS;

The model used in this application is the Employee class in Listing 10.6.

Listing 10.6. The Employee model class

package applOa;

public class Enpl oyee {
private int id;
private String firstNane;
private String | astNane;

public Enpl oyee() {
}
public Enployee(int id, String firstNane, String |astNane) {

this.id = id;
this.firstName = firstNange;
this.last Nane = | ast Nang;

}

/1l getters and setters not shown

Note that a model class must have a no-argument constructor. Since the Employee class
has a constructor that accepts three arguments, a no-argument constructor must be
explicitly defined. The Employee class itself is very simple with three properties, id,
firstName, and lastName.

Both the list and create methods in EmployeeAction rely on an EmployeeManager class
that hides the complexity of the business logic that manages employees. In a real-world
solution, EmployeeManager could be a business service that reads from and writes to a

database. In this application, EmployeeManager provides a simple repository of
Employee objects in a List.

Note

Chapter 11, "Persistence Layer" explains the Data Access Object design pattern for
data access.

The EmployeeManager class is shown in Listing 10.7.

Listing 10.7. The EmployeeManager class

package applOa;
i mport java.util.Arraylist;
i mport java.util.List;

public class Enpl oyeeManager {

private static List<Enmpl oyee> enpl oyees;

public static int id;

static {
enpl oyees = new ArraylLi st <Enpl oyee>();
enpl oyees. add(new Enpl oyee(++i d, "Ken", "Cornell"));
enpl oyees. add(new Enpl oyee(++i d, "Cindy", "Huang"));
enpl oyees. add(new Enpl oyee(++i d, "Ross", "Geller"));
enpl oyees. add(new Enpl oyee(++i d, "Ceorge", "M chael"));
enpl oyees. add(new Enpl oyee(++i d, "Bruce", "Santiago"));

}

public static List<Enployee> get Enpl oyees() {
return enpl oyees;
}

public static void create(Enpl oyee enpl oyee) {
enpl oyee. set | d(++i d);
enpl oyees. add(enpl oyee) ;

You can run the application by directing your browser to this URL:

http://1 ocal host: 8080/ applOa/ Enpl oyee_ | i st. action

Figure 10.1 shows how the employee list looks like.

Figure 10.1. Using the Model Driven interceptor

2 Employee List - Microsoft Internet Explorer |._||E|[Z|
File Edit Wiew Favorites Tools Help .1.'
i Address !@ http:/ flocalhost: 8080/ app 1 0a/Emplayee_lisk, ackion Vl =0

Add New Employee

First Name: | |

Last Name: | |

Employee Id First Name Last Name

1 Rachel Greene
= Monica Geller
3 Phoebe Buffay
il Joey Tribbiani
5 Chandler Bing
& Ross Geller
I:El Ciore ‘::! Local intranet

If you click the Submit button, the create method in the action object will be invoked. A
validation file (named EmployeeAction-Employee_ create-validation.xml) is used to
make sure that the first name and the last name are not empty. Listing 10.8 shows the
EmployeeAction-Employee_create-validation.xml file.

Listing 10.8. The EmployeeAction-Employee_create-validation.xml file

<! DOCTYPE val i dators PUBLIC
"-// OpenSynphony G oup//XWrk Validator 1.0.2//EN
"“http://ww. opensynphony. conf xwor k/ xwor k- val i dator-1. 0. 2. dtd">

<val i dat or s>
<field nane="firstName">
<field-validator type="requiredstring">
<nessage>Pl ease enter a first name</nessage>
</field-validator>
</field>
<field nane="I| ast Nane" >
<field-validator type="requiredstring">
<nmessage>Pl ease enter a | ast nane</nessage>
</field-validator>
</field>
</val i dat or s>

Now, pay attention to the result elements for the Employee_create action in the
configuration file:

<action name="Enpl oyee_create" nethod="create"
cl ass="appl0a. Enpl oyeeActi on" >
<result type="redirect-action">Enpl oyee |ist</result>
<result nane="input">/|jsp/ Enpl oyee. |sp</result>
</ action>

After a successful create, the user will be redirected to the Employee_list action. Why
didn't we do a forward that would have been faster?

The Create Employee form is submitted to this URI:

/ Enpl oyee_create. acti on

If we had used a forward, then the URI would have remained the same after the action and
result were executed. As a result, if the user clicked the browser's Refresh/Reload button,
the form (and its contents) would be submitted again and a new employee would be
created.

By redirecting, the URI after Employee_create will be the following, which will not cause
another create if the user (accidentally) reloads the page.

/ Enpl oyee_list. action

The Preparable Interceptor

As you can see in the preceding section, the getModel method of a ModelDriven action
always returns a new object. However, as models are sometimes retrieved from a database,
you cannot simply return a new instance every time you override getModel. In the latter
case, the Preparable interceptor can help. This interceptor calls the prepare method of any
action object whose class implements the com.opensymphony.xwork2.Preparable

interface. This interface is shown in Listing 10.9.

Listing 10.9. The Preparable interface

package com opensynphony. xwor k2;
public interface Preparable {

voi d prepare() throws Exception;
}

Let's continue with an example.
The appl0b application extends appl0a by adding three actions:
e Employee_edit

e Employee_update
e Employee_ delete

The declarations for the actions in app10b are given in Listing 10.10.

Listing 10.10. The action declarations in appl10b

<package nanme="applOb" extends="struts-defaul t">
<action nanme="Enpl oyee |ist" method="1ist"
cl ass="applOb. Enpl oyeeActi on" >
<resul t >/ sp/ Enpl oyee. j sp</resul t>
<result nanme="input">/jsp/ Enpl oyee.jsp</result>
</ action>
<action nanme="Enpl oyee_create" method="create"
cl ass="applOb. Enpl oyeeActi on" >
<result type="redirect-action">Enpl oyee |list</result>
<result nanme="input">/jsp/ Enpl oyee.jsp</result>
</ action>

<action nane="Enpl oyee_edit" nethod="edit"
cl ass="applOb. Enpl oyeeActi on" >
<i nterceptor-ref name="paransPrepareParansSt ack"/ >
<resul t >/ sp/ Edi t Enpl oyee. j sp</resul t >
</ action>
<action nane="Enpl oyee_updat e" net hod="updat e"
cl ass="applOb. Enpl oyeeActi on" >
<result type="redirect-action">Enpl oyee_list</result>
</ action>
<action nanme="Enpl oyee_del et e" met hod="del et e"
cl ass="applOb. Enpl oyeeActi on" >
<resul t >/ sp/ Enpl oyee. j sp</resul t>

</ action>
</ package>

The EmployeeAction class, shown in Listing 10.11, handles all the actions in app10b.

Listing 10.11. The EmployeeAction class

package applOb;

i mport com opensynphony. xwor k2. Acti onSupport;
i mport com opensynphony. xwor k2. Model Dri ven;

i mport com opensynphony. xwor k2. Pr epar abl e;

i mport java.util.List;

public class Enpl oyeeActi on extends Acti onSupport
i npl emrents Preparable, Mdel Driven {
private Enpl oyee enpl oyee
private int enployeeld;
private List<Enpl oyee> enpl oyees;

public void prepare() throws Exception {
if (employeeld == 0) {
enpl oyee = new Enpl oyee();
} else {
enpl oyee

Enpl oyeeManager . fi nd(enpl oyeel d) ;

}

public Object getMdel () {
return enpl oyee;
}

public List<Enpl oyee> get Enpl oyees() {
enpl oyees = Enpl oyeeManager . get Enpl oyees() ;
return enpl oyees;

}

publ i c Enpl oyee get Enpl oyee() {
return enpl oyee;
}

public void set Enpl oyee(Enpl oyee enpl oyee) {
thi s. enpl oyee = enpl oyee;

public void set Enpl oyees(Li st <Enpl oyee> enpl oyees) {
thi s. enpl oyees = enpl oyees;
}

public String list() {
enpl oyees = Enpl oyeeManager . get Enpl oyees() ;
return SUCCESS
}
public String create() {
Enpl oyeeManager . cr eat e(enpl oyee) ;
return SUCCESS

public String edit() {
return SUCCESS;

}

public String update() {
Enpl oyeeManager . updat e(enpl oyee) ;
return SUCCESS;

}

public String delete() {
Enpl oyeeManager . del et e(enpl oyeel d) ;
return SUCCESS;

}

public int getEnployeeld() {
return enpl oyeel d;
}

public void set Enpl oyeel d(int enployeeld) {
this.enpl oyeeld = enpl oyeel d;

Note that the prepare method in the EmployeeAction class will create a new Employee
object only if employeeld is O. If an action invocation populates the employeeld property
of the action object, the prepare method will attempt to find an Employee object through
the EmployeeManager class.

This is why the Employee_edit action uses the paramsPrepareParamsStack stack that
calls the Params interceptor twice, as shown below:

<i nterceptor-stack name="paransPrepar eParansSt ack" >
<interceptor-ref nane="parans"/>

<interceptor-ref name="prepare"/>
<interceptor-ref name="nodel -driven"/>

<interceptor-ref nane="parans"/>

</interceptor-stack>

The first time the Parameters interceptor is invoked, it populates the employeeld property
on the EmployeeAction object, so that the prepare method knows how to retrieve the
Employee object to be edited. After the Prepare and Model Driven interceptors are invoked,
the Parameters interceptor is called again, this time giving it the opportunity to populate the
model.

The model class (Employee) for this application is exactly the same as the one in appl0a
and will not be reprinted here. However, the EmployeeManager class has been modified

and is given in Listing 10.12.

Listing 10.12. The EmployeeManager class

package applOb;
import java.util.ArraylList;
i mport java.util.List;

public class Enpl oyeeManager {

private static List<Enpl oyee> enpl oyees;

public static int id;

static {
enpl oyees = new ArraylLi st <Enpl oyee>();
enpl oyees. add(new Enpl oyee(++i d, "Ken", "Cornell"));
enpl oyees. add(new Enpl oyee(++i d, "Cindy", "Huang"));
enpl oyees. add(new Enpl oyee(++i d, "Ross", "Geller"));
enpl oyees. add(new Enpl oyee(++i d, "Ceorge", "M chael"));
enpl oyees. add(new Enpl oyee(++i d, "Bruce", "Santiago"));

}

public static List<Enployee> get Enpl oyees() {
return enpl oyees;
}

public static void create(Enpl oyee enpl oyee) {
enpl oyee. set | d(++i d) ;
enpl oyees. add(enpl oyee) ;
}
public static void delete(int enployeeld) {
for (Enpl oyee enpl oyee : enpl oyees) {
if (enployee.getld() == enpl oyeeld) {
enpl oyees. renove(enpl oyee) ;
br eak;

}
}
public static Enployee find(int enployeeld) {
for (Enployee enpl oyee : enpl oyees) {
if (enployee.getld() == enployeeld) {
Systemout. println("found");
return enpl oyee;
}
}
return null;
}
public static void updat e(Enpl oyee enpl oyee) {
int enmpl oyeeld = enpl oyee. getld();
for (Enployee enp : enployees) {
if (enmp.getld() == enployeeld) {
enp. set Fi rst Nane(enpl oyee. get Fi r st Nane()) ;
enp. set Last Nanme(enpl oyee. get Last Nane()) ;
br eak;

You can invoke the application by using this URL:

http://1 ocal host: 8080/ app08b/ Enpl oyee |ist.action

Figure 10.2 shows the list of employees. It's similar except that there are now Edit and
Delete links for each employee.

Figure 10.2. Using the Prepare interceptor

A Employee List - Microsoft Internet Explorer |Z||E|E|
,n

] 1
: Address |5Ej htkp:/ flocalhost: 8080/ app1 0b/Employves _isk, action Vl G0

File Edit Mjew Faworites Tools Help

Add New Employee

First Name: | |

Last Name: | |

Employee First — Last — Egitpelete
il Rachel Greene Edit Delete
2 Monica Geller Edit Delete
Z: Phoehbe Buffay Edit Delete
4 Joey Tribbiani Edit Delete
5 Chandler Bing Edit Delete
&) Ross Geller Edit Delete

I@ ‘:g Local intranet

Summary

It is often necessary to separate the action and the model, especially in an enterprise
application and in a more complex Struts application. This chapter showed how the Model
Driven and Prepare interceptors could help.

Chapter 11. The Persistence Layer

At some stage, application data needs to be persisted or saved to secondary storage.
Several methods are available, including storing them into files, relational databases, XML
documents, and so on. Of these, persisting data to a relational database is the most reliable
and the most popular. In addition, object-to-relational database mapping tools can be
purchased off the shelf to help Java programmers persist Java objects.

Without a mapping tool, you have other options in hand. These include the Data Access
Object (DAO) pattern, Java Data Objects (JDO), open source libraries such as Hibernate,
and so on. Of these, the DAO pattern in the easiest to learn and is sufficient in most
applications. This chapter shows you how to implement the DAO pattern for data
persistence.

Also note that because many parts of an application may need to persist objects, a good
design dictates that you create a dedicated layer for data persistence. This persistence layer
provides methods that can be called by any component that needs to persist objects. In
addition to simplifying your application architecture (because now object persistence is
handled by only one component), the persistence layer also hides the complexity of

accessing the relational database. The persistence layer is depicted in Figure 11.1.

Figure 11.1. The persistence layer

struts Actoon
Object
Persistence
| .-a].'ur
Other Relational
Components Database

The persistence layer provides public methods for storing, retrieving, and manipulating
value objects, and the client of the persistence layer does not have to know how the
persistence layer accomplishes this. All they care is their data is safe and retrievable.

The Data Access Object Pattern

With this pattern, you write a class for each type of object you need to persist. For example,
if your application needs to persist three types of transfer objects—Product, Customer,
and Order—you need three DAO classes, each of which takes care of an object type.
Therefore, you would have the following classes: ProductDAO, CustomerDAO, and
OrderDAO. The DAO suffix at the end of the class name indicates that the class is a DAO
class. It is a convention that you should follow unless you have compelling reasons not to
do so.

A typical DAO class takes care of the addition, deletion, modification, and retrieval of an
object, and the searching for those objects. For example, a ProductDAQ class may support
the following methods:

voi d addProduct (Product product)

voi d updat eProduct (Product product)

voi d del et eProduct (i nt productld)

Product get Product (i nt productld)

Li st <Product> fi ndProducts(SearchCriteria searchCriteria)

There are many variants of the DAO pattern. You will learn the three most common
variants: from the most basic to the most flexible.

The Simplest Implementation of the DAO Pattern

In this implementation, a client instantiates the DAO class directly and call its methods.
Figure 11.2 shows the ProductDAO class in this variant of the DAO pattern.

Figure 11.2. The simplest implementation of the DAO pattern

Struts Action CustomerD AQ
== creates ==

+getCustomer]) woid
+createCustomer (O void
+deleteCustomer(Tvoid
+zearchCustomer(T void
+updateCustomer () void

When a Struts action object needs to access product information, it instantiates the
ProductDAO class and calls its methods.

The DAO Pattern with A DAO Interface

A typical Struts application has more than one DAO class. The instances of the DAO classes
need a uniform way of getting a connection object to access the data source. It is therefore
convenient to have a DAO interface that provides the getConnection method and a
DAOBase class that provides the implementation of the method. All the DAO classes then

extend the DAOBase class, as depicted in Figure 11.3.

Figure 11.3. DAO pattern with a DAO interface

=2 interface ==
DAD

+etC onnection () void

a

DAOBase
+etC onnection():void
ProductDAQ OrderD AQ CustomerD A0

+0etP roduct O void +oetOrder () void +getC ustamer() void
+aarch P rodud () void +sEarch Order () void +createCustomer (1 woid
+createProduct (1 void +createCrder(void +deleteCustomer(1void
+updateP roduct (Tvoid +updateOrder()void +zearchCustomer(T void
+oeletel rodud () void +oeleteCrder O void +upcateC ustomer () void

The DAO Pattern with the Abstract Factory Pattern

Each method in the DAO class accesses the database by using an SQL statement.
Unfortunately, the SQL statement may vary depending on the database type. For example,
to insert a record into a table, Oracle databases support the notion of sequences to
generate sequential numbers for new records. Therefore, in Oracle, you would perform two
operations: generate a sequential number and insert a new record. MySQL, by contrast,
supports auto numbers that get generated when new records are inserted. In this case, an
insert method will depend on the database it is persisting data to. To allow your application
to support multiple databases, you can modify your DAO pattern implementation to employ

the Abstract Factory pattern. Figure 11.4 shows the CustomerDAO interface that
defines the methods that need to exist in a CustomerDAO object. A CustomerDAO
implementation will be tied to a database type. In Figure 11.4 two implementation

classes are available, CustomerDAOMySQLImpl and CustomerDAOOraclelmpl, which
supports persisting objects to the MySQL database and the Oracle database, respectively.

Figure 11.4. DAO pattern with Abstract Factory pattern

=< jhterface ==
Cu=tonerD AD

CustomerD A0 MySO LImpl

=< interface ==
DAO

+yetC onnedion() voic

+etC onnedion(T woid

Customer AQ Oraclelmpl

Implementing the DAO Pattern

The applla application exemplifies the DAO pattern. In this application you can search
customers, add, update, and delete customers. The CustomerDAO interface provides
methods for manipulating CustomerTO objects. The class diagram is the same as the one

in Figure 11.4. The CustomerDAO interface has one implementation,

CustomerDAOMySQLImpl.

In order to discuss the application thoroughly, | split the applications into subsections.

Note

To run the applla application, you need to have a MySQL database installed on your
machine and run the MySQLScript.sql file included in the applla application to create the

Customers table in the test database.

The DAO Interface and the DAOBase Class

DAO is an interface that all DAO classes must implement, either directly or indirectly. There
is only one method defined in the DAO interface, getConnection. The DAO interface is

given in Listing 11.1.

Listing 11.1. The DAO interface

package applla. dao;
i mport java.sql.Connecti on;
public interface DAO {
publ i c Connecti on get Connection() throws DACExcepti on;
}

The DAOBase class, shown in Listing 11.2, provides an implementation of the
getConnection method of the DAO interface.

Listing 11.2. The DAOBase Class

package applla. dao;

i nport java.sql. Connecti on;

i mport java.sql.SQLExcepti on;

i mport javax.servlet. Servl et Cont ext;

i mport javax.sql . Dat aSour ce;

i mport org.apache. struts2. Servl et Acti onCont ext;

public class DAOBase inpl enents DAO {
publ i c Connecti on get Connection() throws DAOException {
Servl et Cont ext servl et Context = Servl et Acti onCont ext.
get Servl et Cont ext () ;
Dat aSour ce dat aSource = (Dat aSource)
servl et Cont ext . get Attri bute("dat aSource");
Connecti on connection = null;
if (dataSource !'= null) {
try {
connection = dataSource. get Connection();
} catch (SQLException e) {
System out . printl n(" DAOBase") ;
t hr ow new DAOException();
}
}

return connection;

The getConnection method returns a java.sgl.Connection that can be used by DAO
objects to access the database. In Java SE, you can obtain a Connection object via
java.sqgl.DriverManager. In Java EE, however, scalability is very important and you
definitely want to use connection pooling to obtain Connection objects quickly. The
Jjavax.sgl.DataSource supports connection pooling and all Java EE containers must
provide a DataSource object from which Connection objects can be obtained. Connection
pooling is so important that you can even find this feature in Tomcat, even though Tomcat
is not a Java EE container.

In Java EE, you obtain a DataSource object by employing a JNDI lookup using this
boilerplate code:

try {
Context context = new Initial Context();

Dat aSour ce dat aSource = (DataSource)
cont ext . | ookup(dat aSour ceJndi Nane) ;

JNDI lookups are expensive operations, and, as such, obtaining a DataSource is resource
intensive. Therefore, you may want to cache this object and the ServiletContext object will
be an ideal location to cache it. In applla we use the application listener in Listing 11.3
to obtain a DataSource object and store it in the ServletContext object. Afterwards, in

the DAOBase class in Listing 11.2 you can obtain a DataSource by using this code:

Servl et Cont ext Servl et Context = Servl et Acti onCont ext .
get Ser vl et Cont ext () ;

Dat aSour ce dat aSource = (Dat aSour ce)
Servl et Cont ext . get Attri bute("dataSource");

Listing 11.3. The AppListener class

package applla.li stener;
i mport javax. nam ng. Cont ext ;
i mport javax.nam ng.|nitial Context;
i mport javax. nam ng. Nam ngExcepti on;
i mport javax.servlet. Servl et Cont ext ;
i mport javax.servlet. Servl et Cont ext Event;
i mport javax.servlet. Servl et Cont ext Li stener;
i mport javax.sql . Dat aSour ce;
public class AppListener inplenents ServletContextListener {
public void contextlnitialized(ServletContextEvent sce) {
Servl et Cont ext servl et Context = sce. get Servl et Context ();
String dat aSourcedndi Name = servl et Cont ext
.getlnitParaneter("dataSourcedndi Nane") ;
try {
Context context = new Initial Context();
Dat aSour ce dat aSource = (Dat aSour ce)
cont ext . | ookup(dat aSour ceJndi Nane) ;
servl et Cont ext.set Attri bute("dataSource", dataSource);
} catch (Nam ngException e) {
throw new Runti neException();
}
}

public void contextDestroyed(Servl et Cont ext Event cse) {

}

Connection Pooling in Tomcat

To configure connection pooling in Tomcat, add this Context element under
<Host> in Tomcat's server.xml file.

<Cont ext pat h="/applla" docBase="applla" rel oadabl e="true"
debug="8">
<Resour ce name="j dbc/ nyDat aSour ce" aut h="Cont ai ner"
type="j avax. sql . Dat aSour ce"/ >
<Resour cePar ans nane="j dbc/ nyDat aSour ce" >
<par anet er >
<nane>f act or y</ nane>
<val ue>
or g. apache. commons. dbcp. Basi cDat aSour ceFact ory
</ val ue>
</ par anet er >
<par anet er >
<name>naxAct i ve</ nanme>
<val ue>100</ val ue>
</ par anet er >
<par anet er >
<nane>nmaxl dl e</ nanme>
<val ue>30</ val ue>
</ par anet er >
<par anet er >
<nanme>naxWi t </ name>
<val ue>10000</ val ue>
</ par anet er >
<par anet er >
<nanme>user nane</ name>
<val ue>r oot </ val ue>
</ par anet er >
<par anet er >
<nanme>passwor d</ nane>
<val ue></val ue>
</ par anet er >
<par anet er >
<nane>dri ver C assNanme</ nane>
<val ue>com nysql . j dbc. Dri ver </ val ue>
</ par anet er >
<par anet er >
<nane>ur | </ nane>
<val ue>j dbc: nysql : / /1 ocal host/test </val ue>
</ par anet er >
</ Resour cePar ans>
</ Cont ext >

The Context element above facilitates the creation of a DataSource object from
which you can get java.sql.Connection objects from the pool. The specifics of the

DataSource object are given in the parameter elements of the

ResourceParams element. The username and password parameters specify
the user name and password used to access the database, the driverClassName
parameter specifies the JDBC driver, and the url parameter specifies the database
URL for accessing the MySQL database. The url parameter indicates that the
database server resides in the same machine as Tomcat (the use of localhost in
the URL) and the database the DataSource object references is the test database.

Also, for your DAO implementation, you may want to extend the java.lang.Exception class
to have your own DAO-specific exception. Methods in DAO objects can throw this specific
exception so that you can provide code that deals with data access and data manipulation
failures.

A simple DAO-specific exception class, named DAOException, is given in Listing 11.4.

Listing 11.4. The DAOException Class

package applla. dao;
public class DACException extends Exception {

}

The EmployeeDAO Interface
The applla application uses one DAO class, EmployeeDAO. To support multiple
databases, EmployeeDAO is written as an interface that defines the methods for

EmployeeDAO objects. Listing 11.5 presents the EmployeeDAO interface.

Listing 11.5. The EmployeeDAO interface

package applla. dao;

i nport applla. Enpl oyee;

i mport applla. Enpl oyeeSearchCriteri a;
i mport java.util.List;

public interface Enpl oyeeDAO {
public void creat eEnpl oyee(Enpl oyee enpl oyee)
t hrows DAOCExcepti on;
public void updat eEnpl oyee(Enpl oyee cust oner)
t hrows DACExcepti on;
publ i c Enpl oyee get Enpl oyee(i nt enpl oyeel d) throws DACExcepti on;
public void del et eEnpl oyee(i nt enpl oyeel d) throws DAOCExcepti on;
public List<Enpl oyee> sear chEnpl oyees(Enpl oyeeSearchCriteria
searchCriteria) throws DACException;

The createEmployee and updateEmployee methods accept an Employee object to be
inserted or updated. The getEmployee and deleteEmployee methods accept an employee
identifier, and the searchEmployees method accepts an EmployeeSearchCriteria.

In applla the EmployeeSearchCriteria class is similar to the Employee class, however
in other applications it may include search-related properties, such as sortOrder and

maximumSearchResults, that do not exist in Employee. Hence, the need for another

class that encapsulates user search criteria.

The EmployeeDAOMySQLImMpl Class

The EmployeeDAOMySQLImpl class, presented in Listing 11.6, is an implementation
of the EmployeeDAO interface. To support another database, you can create another

EmployeeDAO implementation, such as EmployeeDAOOracleImpl,
EmployeeDAOSQLServerImpl, etc.

Listing 11.6. The EmployeeDAOMySQLImpl Interface

package applla. dao;

i mport java.sql.SQLException

i mport java.sql.Connecti on;

i mport java.sql.PreparedStatenent;
i mport java.sql.ResultSet;

i mport java.sql.Statenment;

i mport java.util.ArraylList;

i mport java.util.List;

i nport applla. Enpl oyee;

i nport applla. Enpl oyeeSearchCriteri a;
i mport applla. dao. DACExcepti on;

i mport applla.dao. DBUtI |

public class Enpl oyeeDAOWSQLI npl ext ends DAOBase
i npl emrent s Enpl oyeeDAO {
private static final String CREATE_EMPLOYEE SQL =
"I NSERT | NTO enpl oyees (firstNane, | astNane) VALUES (?,
public void creat eEnpl oyee(Enpl oyee cust oner)
t hrows DACException {
Connecti on connection = null;
Prepar edSt at enent pStatenent = nul |l ;
try {
connection = get Connection();
/'l Prepare a statenent to insert a record
pSt at enent = connecti on. prepar eSt at enent (
CREATE_EMPLOYEE_SQ.) ;
pSt at enent . set String(1, custoner.getFirstNanme());
pSt at enent . set String(2, custoner.getlLastNanme());
pSt at enent . execut eUpdat e() ;
pSt at enent . cl ose();
} catch (SQLException ex) {
t hr ow new DAOCException();
} finally {
try {
connection. cl ose();
} catch (SQLException ex) {
t hr ow new DAOException();
}

2",

private static final String UPDATE EMPLOYEE SQL =
"UPDATE enpl oyees SET firstNanme=?, |astNanme=? WHERE id = ?";
public void updat eEnpl oyee(Enpl oyee enpl oyee)
t hrows DACException {
Connection connection = null;
Prepar edSt at enent pStatenent = nul |l ;
try {
connection = get Connection();
pSt at enent = connecti on. prepareSt at enent (
UPDATE_EMPLOYEE SQL) ;
pSt at enent . set String(1, enpl oyee. get FirstNane());
pSt at enent . set String(2, enpl oyee. getLast Nane());
pSt at enent . setInt (3, enployee.getld());
pSt at enent . execut eUpdat e() ;
pSt at enent . cl ose();
} catch (SQ.Exception e) {
t hrow new DACException();
} finally {
try {
connection. cl ose();

} catch (SQLException ex) {
}

}

private static final String GET_EMPLOYEE SQL =

"SELECT firstNanme, |astNanme FROM enpl oyees WHERE id = ?";
publ i c Enpl oyee get Enpl oyee(i nt enpl oyeel d)

t hrows DACException {

Connection connection = null;

Prepar edSt at enent pStatenent = nul |l ;

ResultSet rs = null;

Enpl oyee enpl oyee = new Enpl oyee();

try {
connection = get Connection();
pSt at enent = connecti on. pr epar eSt at enent (

GET_EMPLOYEE_SQL) ;
pSt at enent . setInt (1, enployeeld);
rs = pStatenent. executeQery();
if (rs.next()) {
enpl oyee. setFirstNane(rs.getString("firstNanme"));
enpl oyee. set Last Nane(rs. get String("l ast Nane"));
enpl oyee. set | d(enpl oyeel d) ;

rs.close();
pSt at enent . cl ose();
} catch (SQLException ex) {
t hrow new DAOException();
} finally {
try {
connection. cl ose();
} catch (SQLException ex) {
}
}

return enpl oyee;

private static final String DELETE EMPLOYEE SQL =
"DELETE FROM enpl oyees WHERE id = ?";
public void del et eEnpl oyee(int enpl oyeeld) throws DAOCException {
Connection connection = null;
Prepar edSt at enent pStatenent = nul |l ;
try {
connection = get Connection();
pSt at enent =
connecti on. prepar eSt at enent (DELETE_EMPLOYEE_SQL) ;
pSt at enent . setInt(1, enployeeld);
pSt at enent . execut eUpdat e() ;
pSt at enent . cl ose();
} catch (SQLException e) {
t hr ow new DAOException();
} finally {
try {
connection. cl ose();
} catch (SQLException ex) {
}

}

private static final String SEARCH EMPLOYEES SQ =
"SELECT id, firstNane, |astNanme FROM enpl oyees WHERE ";
public List<Enpl oyee> sear chEnpl oyees(
Enpl oyeeSearchCriteria searchCriteria)
t hrows DACException {
Li st <Enpl oyee> enpl oyees = new ArrayLi st <Enpl oyee>();
Connection connection = null;
St at ement st at enent nul | ;
Resul t Set result Set nul | ;

/1 Build the search criterias

StringBuilder criteriaSqgl = new StringBuil der(512);

criteriaSql.append(SEARCH EMPLOYEES SQ.);

if (searchCriteria.getFirstNane() !'= null) {
criteriaSql.append("firstName LIKE '% +
DBUtI | . fixSql Fi el dval ue(searchCriteria.getFirstNanme())
+ "% AND ");

if (searchCriteria.getLastNanme() != null) {
criteriaSql.append("lastNane LIKE '% +
DBUtI | . fixSql Fi el dval ue(searchCriteria.getlLastNane())
+ "% AND ");

}
/'l Rernove unused 'And' & ' WHERE
if (criteriaSql.substring(criteriaSqgl.length() - 5).
equal s(" AND "))
criteriaSql.delete(criteriaSql.length() - 5,
criteriaSqgl.length() - 1);
if (criteriaSql.substring(criteriaSql.length() - 7).
equal s(" WHERE "))
criteriaSql.delete(criteriaSql.length() - 7,
criteriaSqgl.length() - 1);

try {
connection = get Connection();

statenent = connection. createStatenent();
resul tSet = statenment.executeQuery(
criteriaSqgl.toString());
while (resultSet.next()) {
Enpl oyee enpl oyee = new Enpl oyee();
enpl oyee. setld(resultSet.getInt("id"));
enpl oyee. set Fi r st Nange(
resultSet.getString("firstNanme"));
enpl oyee. set Last Nang(
resultSet.getString("lastNane"));
enpl oyees. add(enpl oyee) ;
}
resul t Set. cl ose();
stat enent . cl ose();
} catch (SQLException e) {
t hrow new DAOException();
} finally {

try {
connection. cl ose();

} catch (SQLException ex) {
}
}

return enpl oyees;

The SQL statements for all the methods, except searchEmployees, are defined as static
final Strings because they will never change. Making them static final avoids creating the
same Strings again and again. Also, all those methods use a PreparedStatement instead
of a java.sql.Statement even though the PreparedStatement object is only executed
once. The use of PreparedStatement saves you from having to check if one of the
arguments contains a single quote. With a Statement, you must escape any single quote in
the argument.

The searchEmployees method, on the other hand, is based on a dynamic SQL statement.
This necessitates us to use a Statement object. Consequently, you must check for single

quotes in the arguments using the DbUTil class's fixSqlFieldvalue method. Listing 11.7
presents the fixSqglFieldValue method.

Listing 11.7. The fixSqlFieldvalue method

package applla. dao;

public class DBUtil ({
public static String fixSql Fi el dvalue(String value) {
if (value == null) {
return null;
}

int length = value.length();

StringBuil der fixedValue = new StringBuilder((int) (length *
1.1));

for (int i =0; i <length; i++) {

char ¢ = value.charAt(i);

if (c =="\"") {
fi xedVval ue. append("'"'");
} else {
fi xedVal ue. append(c);
}
}
return fixedValue.toString();
}
}
Note

You could replace the fixSqlFieldvValue method with the replaceAll method of the String
class like this.

String t=s.replaceAl | ("[\']", "'"");

However, this method is compute intensive because it uses regular expressions and should
be avoided in applications designed to be scalable.

The DAOFactory Class

The DAOFactory class helps the client instantiate a DAO class. Also, the necessity for a
DAOFactory class in the application stems from the fact that the implementation class
name is not known at design time, e.g. whether it is EmployeeDAOMySQLImpl or
EmployeeDAOOraclelmpl. As such, the DAOFactory class hides the complexity of
creating a DAO object.

The DAOFactory class is presented in Listing 11.8.

Listing 11.8. The DAOFactory Class

package applla. dao;
i nport javax.servlet. Servl et Cont ext;
i mport org.apache. struts2. Servl et Acti onCont ext ;

public class DAOFactory {
private String databaseType;
private static DAOFactory instance;
static {
i nstance = new DACFactory();
}

private DACFactory() {
Servl et Cont ext servl et Context = ServletActi onCont ext
. get Servl et Context ();
dat abaseType = servl et Context.getlnitParaneter("dbType");

public static DAOFactory getlnstance() {

return instance;
}
publ i c Enmpl oyeeDAO get Enpl oyeeDAQ() {
if ("mysqgl".equal sl gnoreCase(databaseType)) {
return new Enpl oyeeDAOWSQLI npl () ;
} else if ("oracle".equal sl gnoreCase(databaseType)) {
[l return new Enpl oyeeDAOOr acl el npl () ;
} else if ("nmesqgl".equal sl gnoreCase(dat abaseType)) {
/'l return new Enpl oyeeDAOVESQLI npl () ;
}

return null;

You can use the DAOFactory if you know the implementation classes for all your DAOs
when the application is written. This means, if you are thinking of only supporting two
databases, MySQL and Oracle, you know beforehand the type for the EmployeeDAO class
is either EmployeeDAOMyYSQLImMpl or EmployeeDAOOraclelmpl. If in the future your
application needs to support Microsoft SQL Server, you must rewrite the DAOFactory class,
i.e. add another if statement in the getCustomerDAOQO class.

You can add support of more databases without recompiling the DAOFactory class if you
use reflection to create the DAO object. Instead of the dbType parameter in your web.xml
file, you'd have employeeDAOType. Then, you would have the following code in your
DAOFactory class's getCustomerDAO method.

String customer DAOType = Confi g. get Cust oner DAOType() ;
Cl ass cust oner DAOC ass = C ass. f or Nane(cust oner DAOType) ;
Cust omer DAO cust onmer DAO = cust onmer DAOC ass. newl nst ance() ;

The EmployeeManager Class

The EmployeeManager class (shown in Listing 11.9) is the client of the DAO classes.
This class provides another layer between the Struts actions and the DAO classes.

Listing 11.9. The EmployeeManager class

package applla;

i mport java.util.List;

i mport applla. Enpl oyee;

i nport applla. dao. DACEXxcepti on;
i nport applla. dao. DACFact ory;

i nport applla. dao. Enpl oyeeDAQ

public class Enpl oyeeManager {
public static List<Enployee> get Enpl oyees() {
return search(new Enpl oyeeSearchCriteria());
}

public static void create(Enpl oyee enpl oyee) {
Enpl oyeeDAO enpl oyeeDAO =
DACFact ory. get I nst ance() . get Enpl oyeeDAQ) ;
try {
enpl oyeeDAQ. cr eat eEnpl oyee(enpl oyee) ;
} catch (DAOException e) {
}
}

public static void delete(int enployeeld) {
Enpl oyeeDAO enpl oyeeDAO =
DACFact ory. get I nstance() . get Enpl oyeeDAQ() ;
try {
enpl oyeeDAQO. del et eEnpl oyee(enpl oyeel d);
} catch (DAOCException e) {
}
}

public static Enployee find(int enployeeld) {
Enpl oyeeDAO enpl oyeeDAO =
DACFact ory. get I nstance() . get Enpl oyeeDAQ() ;
try {
return enpl oyeeDAQ. get Enpl oyee(enpl oyeel d) ;
} catch (DAOException e) {
}

return null;

}

public static void updat e(Enpl oyee enpl oyee) {
Enpl oyeeDAO enpl oyeeDAO =
DACFact ory. get I nstance() . get Enpl oyeeDAQ() ;
try {
enpl oyeeDAQ. updat eEnpl oyee(enpl oyee) ;
} catch (DAOException e) {

}

public static List<Enployee> search(

Enpl oyeeSearchCriteria criteria) {

Enpl oyeeDAO enpl oyeeDAO =
DACFact ory. get | nstance() . get Enpl oyeeDAQ() ;

try {

return enpl oyeeDAQ. sear chEnpl oyees(criteria);
} catch (DACException e) {
}

return null;

Running the Application

The applla application provides the action classes for creating a new employee, updating
and deleting an existing employee, and searching for employees. The main entry point is
the Employee_list action. To invoke this action, use the following URL.

http://1 ocahost: 8080/ applla/ Enpl oyee list.action

You will see something similar to Figure 11.5.

Figure 11.5. The Employee form

2 Cannot find server - Microsoft Internet Explorer, |:||E|r$__<

'lr

File Edit Wew Favorites Tools Help k
: Address !@ http: fflocalhost: 3080/ app1 1aEmployee_list, ackion \"JI G0

Add New Employee

First Name: | |

Last Name: | |

Employee First Last :

Id M R Edit Delete

1 Rachel Greene Edit Delete

2 Monica Gellar Edit Delete

= Phoebe Buffay Edit Delete

4 Joey Tribbiani Edit Delete

5 Chandler Bing Edit Delete

& Ross Geller Edit Delete
;EI & Internet

When you run this application for the first time, you will not see the list of existing
employees.

Hibernate

Hibernate has gained popularity in the past few years as an add-on for Java EE and other

applications. Its web site (WWW.hibernate.org) advertises this free product as "a
powerful, ultra-high performance object/relational persistence and query service for Java."

Using Hibernate, you do not need to implement your own persistence layer. Instead, you
use a tool to create databases and related tables and determine how your objects should be
persisted. Hibernate virtually supports all kinds of database servers in the market today,
and its Hibernate Query Language provides "an elegant bridge between the object and
relational worlds".

More people will be using Hibernate in the near future. If you have time, invest in it.

Summary

Most applications need a persistence layer for persisting value objects. The persistence layer
hides the complexity of accessing the database from its clients, notably the action objects.
The persistence layer can be implemented as entity beans, the DAO pattern, by using
Hibernate, etc.

This chapter shows you in detail how to implement the DAO pattern. There are many
variants of this pattern and which one you choose depends on the project specification. The
most flexible DAO pattern is preferable because you can extend your application easily
should it need to change in the future.

Chapter 12. File Upload

HTTP file upload is specified in Request For Comments (RFC) 1867. Struts' File Upload
interceptor supports HTTP file upload by seamlessly incorporating the Jakarta Commons
FileUpload library that contains a multipart parser. This chapter discusses file upload in
general and how you can do single and multiple file uploads in Struts.

File Upload Overview

When using an HTML form to upload a file or multiple files, the enctype attribute of the
form must be assigned multipart/form-data and the form method must be post. The
form should look like this.

<form action="anActi on" enctype="mnultipart/formdata” nethod="post">

</ f or mp

To enable the user to select a file you must have an <input type=""file""> field. Here is an
example of a form used for selecting a file. In addition to a file field, the form also contains
a text box named description and a submit button.

<form acti on="Upl oad. acti on" enctype="nultipart/formdata"
nmet hod="post " >
Select file to upload <input type="file" name="fil enane"/>

Description: <input type="text" name="description"/>

<i nput type="submt" val ue="Upl oad"/ >
</fornmp

Figure 12.1 shows how the file input field is rendered as a text box and a Browse
button.

Figure 12.1. Rendered visual elements of <input type=file>

Upload File Formn

Descnption:

| [Browse._. || Submit

Without Struts or the Java Commons FileUpload library, you would have to call the
getlnputStream method on HttpServietRequest and parse the resulting InputStream
object to retrieve the uploaded file. This is a tedious and error-prone task. Luckily, Struts
makes it very easy to retrieve uploaded files.

File Upload in Struts

In Struts, the File Upload interceptor and the Jakarta Commons FileUpload library help parse
uploaded files. Basically, there are only two things you need to do.

First, use the file tag in a form on your JSP. Give it a descriptive name such as attachment
or upload. For multiple file upload, use multiple file tags and give them the same name. For
instance, the following form contains three file tags named attachment.

<s:formaction="File_mrultipleUpl oad"
enctype="mul ti part/formdata">
<s:file nanme="attachnent" | abel ="Attachment 1"/>
<s:file nanme="attachnent" | abel ="Attachment 2"/>
<s:file nanme="attachnent" | abel ="Attachnment 3"/>
<s:submt />
</s:fornmp

A file tag will be rendered as the following input element in the browser:

<i nput type="file" name="input Name"/>

Second, create an action class with three properties. The properties must be named
according to these patterns:

e [inputName] File
e [inputName]FileName
e [inputName]ContentType

Here [inputName] is the name of the file tag(s) on the JSP. For example, if the file tag's
name is attachment, you will have these properties in your action class:

e attachmentFile
e attachmentFileName
e attachmentContentType

For single file upload, the type of [inputName] File is java.io.File and references the
uploaded file. The second and third properties are String and refer to the uploaded file name
and the content type, respectively.

For multiple file upload, you can either use arrays or java.util.Lists. For instance, the
following properties are arrays of Files and Strings.

private File[] attachnmentFil e;
private String[] attachmentFil eNane;
private String[] attachment Content Type;

If you decide to use Lists, you must assign an empty list to each of the properties:

private List<File> attachnmentFile = new ArrayList<File>();
private List<String> attachnmentFil eName = new ArrayList<String>();
private List<String> attachnment Content Type =

new ArraylList<String>();

You can access these properties from your action method. Normally, you would want to
save the uploaded file into a folder or a database and you would iterate over the File array,
if an array is being used:

Servl et Cont ext servl et Context =
Servl et Acti onCont ext . get Ser vl et Cont ext () ;
String databDir = servl et Context.getReal Path("/WEB-1NF");
for (int i=0; i < attachnent.length; i++) {
File savedFile = new File(databDir, attachnentFileNane[i]);
attachnent[i].renaneTo(savedFil e);

Since you often need to access both the uploaded file and the file name at each iteration,
using arrays is easier because an array lets you iterate over its elements by index. On the
other hand, iterating over a list would be more difficult.

The File Upload Interceptor

This interceptor is responsible for file upload and is included in the default stack. Even if you
know nothing about this interceptor, you can still manage uploaded files easily. However,
understanding how this interceptor works allows you to make full use of the file upload
feature in Struts.

There are two important properties that you may want to set on the interceptor. You can
limit the size of the uploaded file as well as determine the allowable content type by setting
the following properties of the File Upload interceptor.

e maximumsSize. The maximum size (in bytes) of the uploaded file. The default is
about 2MB.
e allowedTypes. A comma-separated list of allowable content types.

For example, the following action imposes a size limit and the type of the uploaded file. Only
files up to 1,000,000 bytes in size and JPEG, GIF, and PNG files can be uploaded.

<action nanme="Fil e _upl oad" class="appl4a. Fil eUpl oadActi on">
<interceptor-ref nane="fil eUpl oad"/>
<par am nanme="naxi nunti ze" >1000000</ par an
<par am nane="al | onedTypes" >
i mage/ gi f, i mage/j peg, i nage/ png
</ par an
</interceptor-ref>
</interceptor-ref>
<i nterceptor-ref name="basicStack"/>

</ action>

If the user uploaded a file that is larger than the specified maximum size or a type not in
the allowedTypes parameter, an error message will be displayed. File upload-related error
messages are predefined in the struts-messages.properties file which is included in the core
Struts JAR file. Here are the contents of the file:

struts. messages. error. upl oadi ng=Error upl oadi ng: {0}

struts. nmessages.error.file.too.large=File too large: {0} "{1}" {2}
struts. messages. error.content.type. not. al |l oned=Cont ent - Type not

al lowed: {0} "{1}" {2}

To override the messages here, create a struts-messages.properties file that contains
values that you want to override the default values and place the file under WEB-
INF/classes/org/apache/struts2. If you create a new struts-messages.properties file, the
default one will not be examined. This means, if you override one message key and decide
to use the other default ones, you must copy the latter to your properties file.

Single File Upload Example

The appl2a application is a Struts application for uploading a file. The directory structure is
shown in Figure 12.2.

Figure 12.2. appl2a directory structure

Iff;'- applia
+-[— cs5
== 5P
|=| Confirm. jsp
|=| SingleUpload.jsp
==~ WEB-IMF
-l classes
-~ applZa
J.,l__,‘., SingleFileUploadaction. class
=I-{= org
-l apache
== skruksZ
skruks-messages. properties
|=| struts. =l
+-[~% data
+-[= lib

|=| web.xml

There are two actions in this application, one for displaying a file upload form and one for
receiving the uploaded file. The action declarations are printed in Listing 12.1.

Listing 12.1. The struts.xml file

<package name="appl2a" extends="struts-default">
<action name="File">
<resul t >/ sp/ Si ngl eUpl oad. j sp</resul t >
</ action>

<action nane="Fil e_si ngl eUpl oad"
cl ass="appl2a. Si ngl eFi | eUpl oadActi on" net hod="upl oad" >
<interceptor-ref name="fil eUpl oad">
<par am nanme="maxi nunti ze" >100000</ par an®
<par am nanme="al | owedTypes" >
i mage/ gi f, i nage/ | peg, i nage/ png
</ par an®
</interceptor-ref>
<interceptor-ref name="basicStack"/>
<result name="input">/jsp/ SingleUpl oad. jsp</result>
<resul t>/j sp/ Si ngl eUpl oad. j sp</resul t >
</ action>
</ package>

The SingleUpload.jsp page (shown in Listing 12.2) contains a form with a file tag.

Listing 12.2. The SingleUpload.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>File Upload</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<di v id="gl obal ">
<h1>Si ngl e File Upl oad</ hl>
<s:fielderror />
<s:form action="Fil e_singl eUpl oad"
enctype="mul ti part/formdata">
<s:textfield nane="description" |abel ="Description"/>
<s:file name="attachnment" | abel ="Attachnent"/>
<s:submt />
</s:fornmpe
</ div>
</ body>
</htm >

When the user submits the form, the File_singleUpload action will be invoked. The
SingleFileUploadAction class in Listing 12.3 handles this action.

Listing 12.3. The SingleFileUploadAction class

package appl2a;

i mport java.io.File;

i mport javax.servlet. Servl et Cont ext;

i mport org.apache. struts2. Servl et Acti onCont ext ;
i mport com opensynphony. xwor k2. Act i onSupport;

public class SingleFileUpl oadActi on extends ActionSupport {
private File attachment;
private String attachment Fi | eNane;
private String attachnment Cont ent Type;
private String description;

/1l getters and setters not shown

public String upload() throws Exception {
System out. println(description);
Servl et Cont ext servl et Context =
Ser vl et Acti onCont ext . get Ser vl et Cont ext () ;

if (attachnment !'= null) {
/1 attachment will be null if there's an error,
/'l such as if the uploaded file is too |arge
String dataDir = servl et Context.get Real Pat h("/WEB-1 NF");
File savedFile = new File(dataDir, attachnentFil eNane);
attachnent . renaneTo(savedFil e);

}
return SUCCESS;

The action class has three properties, attachmentFileName, attachmentContentType,
and description, the first two of which are related to the uploaded file. It saves the
uploaded file under WEB-INF, but you can choose a different location.

The appl2a application also overrides the custom error messages by providing a new
struts-messages.properties file in Listing 12.4.

Listing 12.4. The struts-messages.properties file

struts. nessages. error.content.type.not.allowed=Error. File type not
al | oned.
struts. messages.error.file.too.large=Error. File too |arge.

Run the appl12a application by invoking this URL.

http://1 ocal host: 8080/ appl2al/File.action

You'll see the upload form like the one in Figure 12.3.

Figure 12.3. Single file upload

‘2 File Upload - Microsoft Internet Explorer ._ E'E'
File Edit Wiew Favoritkes Tools Help .','r |
: Address |S§| http: /flocalhost: G060 appl 2/ File, action Yl 50

Single File Upload

Description: | |
Attachment: | \[(Browse.. |
&] Dore %J Local intranet

Multiple File Upload Example
The appl2b application demonstrates multiple file upload. There are two actions in

appl2b, File (for displaying a file upload form) and File_multipleUpload (for handling the
uploaded files). The action declarations are shown in Listing 12.5.

Listing 12.5. The action declarations

<package name="appl2b" extends="struts-default">
<action nane="File">
<resul t>/jsp/ Ml tipleUpl oad.jsp</result>
</ action>
<action nane="File_nultipl eUpl oad"
cl ass="appl2b. Mul tipl eFi | eUpl oadActi on" net hod="upl oad" >
<result nanme="input">/jsp/MiltipleUpload.sp</result>
<resul t>/jsp/ Ml tipleUpl oad.jsp</result>
</ action>
</ package>

The File action displays the MultipleUpload.jsp page in Listing 12.6.

Listing 12.6. The MultipleUpload.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>File Upload</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<di v id="gl obal ">
<hl>Mul tiple File Upl oad</hl>
<s:actionerror />
<s:fielderror />
<s:formaction="File_multipleUpl oad"
enctype="mnul ti part/formdata">
<s:file nanme="attachnent" |abel ="Attachnent 1"/>
<s:file nane="attachnent" | abel ="Attachnment 2"/>
<s:file nane="attachnent" | abel ="Attachnent 3"/>
<s:submt />
</s:fornmp
</ di v>
</ body>
</htm >

When the file upload form is submitted, the File_multipleUpload action is invoked. This

action is handled by the MultipleFileUploadAction class in Listing 12.7. Note that
arrays are used for the uploaded files, file names, and content types.

Listing 12.7. The MultipleFileUploadAction class

package appl2b;

i mport java.io.File;

i mport java.util.Map;

i mport javax.servlet. Servl et Cont ext;

i mport javax.servlet.http. HtpServl et Request ;

i mport org.apache. struts2. Servl et Acti onCont ext ;
i mport com opensynphony. xwor k2. Acti onCont ext ;

i mport com opensynphony. xwor k2. Act i onSupport ;

public class MiltipleFileUpl oadActi on extends ActionSupport {
private File[] attachnent;
private String[] attachmentFil eNane;
private String[] attachnent Content Type

/1l getters and setters not shown
public String upload() throws Exception {
Servl et Cont ext servl et Context =
Servl et Acti onCont ext . get Servl et Cont ext () ;
String dataDir = servl et Context.get Real Pat h("/WEB-1 NF");
for (int i=0; i < attachnent.length; i++) {
File savedFile = new Fil e(dataDir,
attachnment Fi | eNane[i]);
attachnment[i].renaneTo(savedFile);

}
return SUCCESS

You can start uploading multiple files by directing your browser here.

http://1 ocal host: 8080/ appl2b/Fil e.action

You'll see a form similar to the one in Figure 12.4.

Figure 12.4. Multiple file upload

2} File Upload - Microsoft Internet Explorer |Z||E|[z|
"

File Edit Wiew Favoribes Tools Help

; [l : ;]
: Address i@j http:fflocalhost: 8080/ app1 2b)File, action Vl =0

Multiple File Upload

Attachment 1: | [Browse.. |
Attachment 2: | [Erawse.. |
Attachment 3: | | Browse..]

I@bl Done \'-3 Local intranet

You can also use Lists instead of arrays. The MultipleFileUploadAction2 class in Listing

12.8 shows how to use Lists. Note that you must instantiate a List implementation for the
List variables.

Listing 12.8. Using Lists

package appl2a;
i mport com opensynphony. xwor k2. Acti onSupport;
i mport java.io.File;
i mport java.util.Arraylist;
i mport java.util.List;
public class MiltipleFileUploadActi on2 extends ActionSupport {
private List<File> attachnment =
new Arraylist<File>();
private List<String> attachnentFil eNane =
new ArraylList<String>();
private List<String> attachnent Content Type =
new Arraylist<String>();

/1l getters and setters not shown
public String upload() throws Exception {
for (String fileNane : attachnentFil eNane) {
Systemout. println(fil eNane);
}

return SUCCESS;

Using arrays are better than Lists because with arrays you can iterate over the uploaded
files over by index.

Summary

This chapter discussed file upload. Struts supports file upload through the File Upload
interceptor that incorporates the Jakarta Commons FileUpload library. Two examples that
illustrated single file upload and multiple file upload were presented in this chapter

Chapter 13. File Download

This chapter discusses file download, an important topic that does not often get enough
attention in web programming books, and how Struts supports programmatic file download
by providing the Stream result type. Two examples illustrate the use of the stream result

type.

File Download Overview

Downloading files is a day-to-day activity for an Internet surfer. Writing a web application
that allows only authorized users to download certain files is a different story. A solution
would be to use the operating system's or the web container's authentication system. This
authentication mechanism lets you password-protect files so that file downloading is allowed
only after the user has entered the correct user name and password. However, if you have
more than one user, the password must be shared, greatly reducing the effectiveness of the
password. The more people know the password, the less secure it is. Furthermore, when
many users use the same password, it is almost impossible to record who downloads what.

In other applications, you may want to dynamically send a file when the name or location of
the file is not known at design time. For instance, in a product search form, you display the
products found as the result of the search. Each product has a thumbnail image. Since you
do not know at design time which product will be searched for, you do not know which
image files to send to the browser.

In another scenario, you have a large and expensive image that should only be displayed on
your web pages. How do you prevent other web sites from cross referencing it? You can by
checking the referer header of each request for this image before allowing the image to be
downloaded and only allowing access if the referer header contains your domain name.

Programmable file download can help solve all the problems detailed above. In short,
programmable file download lets you select a file to send to the browser.

Note

To protect a file so that someone who knows its URL cannot download it, you must store the
file outside the application directory or under WEB-INF or in external storage such as a
database.

To send a file to the browser, do the following.

1. Set the response's content type to the file's content type. The Content-Type header
specifies the type of the data in the body of an entity and consists of the media type
and subtype identifiers. Visit http://www.iana.org/assignments/media-types to find
all standard content types. If you do not know what the content type is or want the
browser to always display the File Download dialog, set it to Application/Octet-
stream. This value is case insensitive.

2. Add an HTTP response header named Content-Disposition and give it the value
attachment; filename=theFileName, where theFileName is the default name for the
file that appears in the File Download dialog box. This is normally the same name as
the file, but does not have to be so.

For instance, this code sends a file to the browser.

FilelnputStreamfis = new Fil elnputStrean(file);

Buf f er edl nput St ream bi s = new Buf feredl nput Strean(fis);
byte[] bytes = new byte[bis.available()];

response. set Cont ent Type(cont ent Type) ;

Qut put Stream os = response. get Qut put Stream() ;

bi s. read(bytes);

os.wite(bytes);

First, you read the file as a FilelnputStream and load the content to a byte array. Then, you
obtain the HttpServietResponse object's OutputStream and call its write method, passing
the byte array.

The Stream Result Type

Struts provides the Stream result type specifically for file download. When using a Stream
result, you don't need a JSP because the output will be flushed from an InputStream. The

parameters a Stream result can take are listed in Table 13.1. All parameters are
optional.

Table 13.1. Stream result parameters

Name Data Default Description
Type Value

inputName String |inputStream [The name of the action class property that
returns the InputStream object to be flushed
to the browser.

bufferSize int 1024 The buffer size used when reading the
InputStream and the OutputStream used for
flushing data to the browser.

contentType String |text/plain Sets the Content-Type response header

contentLength int Sets the Content-Length response header

contentDisposition|String |inline Sets the Content-Disposition response header

Take the appl13a application as an example. There are two actions that are related to file
download, ViewCss and DownloadCss. ViewCss sends a CSS file to the browser and
instructs the browser to display its content. DownloadCss file sends the CSS file as a file
download. You can modify this example to work with other file types, not only CSS.

Whether the browser will show a file content or display a File Download dialog depends on
the value you set the Content-Type header. Setting it to "text/css" tells the browser that
the file is a CSS file and should be displayed. Assigning "application/octet-stream" tells the

browser that the user should be given the chance to save the file. Listing 13.1 shows the
action declarations in appl3a. The Menu action displays the Menu.jsp page from which
the user can select whether to view or download a CSS file.

Listing 13.1. The action declarations

<package name="appl3a" extends="struts-defaul t">
<action nanme="Menu">
<resul t>/jsp/ Menu. jsp</result>
</ action>
<action name="Vi ewCss" cl ass="appl3a. Fi | eDownl oadActi on">
<result nane="success" type="streant >
<par am nane="i nput Nane" >i nput St r eanx/ par an
<par am nane="cont ent Type" >t ext / css</ par an»
<par am nane="cont ent Di sposition">
fil ename="nai n. css" </ parane
<par am nanme="buf f er Si ze" >2048</ par an»
</result>
</action>
<action nanme="Downl oadCss" cl ass="appl3a. Fi | eDownl oadActi on" >
<result nane="success" type="streant >
<par am nanme="i nput Nane" >i nput St r eanx/ par an
<par am nanme="cont ent Type" >
appl i cation/ octet-stream
</ par anp
<par am nanme="cont ent Di sposi ti on">
fil ename="nai n. css"
</ par anp
<par am nane="buf f er Si ze" >2048</ par an®
</result>
</ action>
</ package>

Note that the main difference between ViewCss and DownloadCss lies in the value of the

contentType parameter. Both use the FileDownloadAction class in Listing 13.2. This
class implements ServletContextAware because it needs access to the ServiletContext
object and use its getResourceAsStream method. Using this method is an easy way to
return a resource as a java.io.lnputStream.

Listing 13.2. The FileDownloadAction class

package appl3a;

i mport java.io.lnputStream

i mport javax.servlet. Servl et Cont ext;

i mport org.apache. struts2.util. Servl et Cont ext Awnar e;
i mport com opensynphony. xwor k2. Act i onSupport;

public class Fil eDownl oadActi on extends Acti onSupport
i npl ements Servl et Cont ext Awar e {
private String filePath;
private Servl et Context servletContext;

public void set Servl et Cont ext (
Servl et Cont ext servl et Context) ({
this. servl et Context = servl et Cont ext;
}
public void setFilePath(String filePath) {
this.filePath = fil ePat h;

public I nputStream getlnputStrean() throws Exception {
return servl et Cont ext.get ResourceAsStrean(fil ePath);
}

The FileDownloadAction class has a filePath property that indicates the file path of the
requested resource. You must set this property from your JSP, the Menu.jsp page shown in

Listing 13.3.

Listing 13.3. The Menu.jsp file

<v@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title>Fi |l e Downl oad</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>

<div id="global" style="w dth: 200px" >

<s:url id="url1" action="ViewCss">

<s: param nanme="fil ePat h" >css/ mai n. css</ s: par an®
</s:url>
<s:a href="%url 1}">Vi ew CSS</s: a>

<br/ >
<s:url id="url2" action="Downl oadCss" >
<s: param nane="fil| ePat h" >css/ nai n. css</s: par an»
</s:url>
<s:a href="9%url 2}">Downl oad CSS</s: a>

</ di v>
</ body>
</htm >

The Main.jsp page employs two url tags with different parameters. The URLs are then used
by the a tags on the page.

To test this example, point your browser to this URL:

http://1 ocal host: 8080/ appl3a/ Menu. acti on

You'll see two links as shown in Figure 13.1. If you click the first link, the content of the
main.css file will be displayed. If you click the second link, the File Download dialog of your
browser will open and you can save the file.

Figure 13.1. Downloading files

3 File Download - Microsoft Internet Explorer |Z||E|E|
File Edit Wiew Favaorites Tools Help ;'f

: Address ISE:I http: fflocalhosk: 8080/ app14a/Menu, action Vl =0

View C55
Download C55

@ Done ‘:J Local intranet

Programmatic File Download

The preceding example showed how to use the stream result. On both actions, the user
had to know the name of the resource and the path to the resource. The app13b
application in this section shows how you can perform programmatic file download, in the
case where the resource name is not known by the user. Here you can also restrict access
to certain resources if you so wish.

Consider the DisplayProducts and Getlmage actions declared in Listing 13.4.

Listing 13.4. Action declarations

<package name="appl3b" extends="struts-defaul t">
<action nanme="Di spl ayPr oduct s"
cl ass="appl3b. Di spl ayProduct sActi on">
<resul t>/jsp/ Product.jsp</result>
</ action>
<action nanme="Cetl nage" class="appl3b. Getl nageAction">
<result nanme="success" type="streant >
<par am nane="i nput Nanme" >i nput St r eanx/ par an»
</result>
</ action>
</ package>

A product is represented by the Product class in Listing 13.5 and DisplayProducts
obtains a list of products and displays the details of each product. The

DisplayProductsAction class, the action class for DisplayProducts, is given in Listing

13.6.

Listing 13.5. The Product class

package appl3b;

i mport java.io.Serializable;

public class Product inplenments Serializable {
private int id;
private String naneg;
public Product() {

}

public Product (int id, String nane) {
this.id = id;
thi s. nane = nane;

/1l getters and setters not shown

Listing 13.6. The DisplayProductsAction class

package appl3b;

import java.util.ArraylList;

i mport java.util.List;

i mport com opensynphony. xwor k2. Act i onSupport;

public class DisplayProductsAction extends ActionSupport {
public List<Product> getProducts() {

Li st <Product > products = new ArraylLi st <Product>();
product s. add(new Product (1, "Television"));
product s. add(new Product (2, "Conputer"));
product s. add(new Product (3, "VCR'));
product s. add(new Product (4, "Gane Console"));
return products;

The Product.jsp page in Listing 13.7 is used to display the product list.

Listing 13.7. The Product.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title>File Downl oad</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>

<di v id="gl obal" style="w dth: 200px" >

<h3>Pr oduct s</ h3>

<t abl e>
<tr>
<t h>Nane</t h>
<t h>Pi cture</th>
</tr>
<s:iterator val ue="products" id="product">
<tr>
<td><s: property val ue="#product.nanme"/></td>
<td>
<s:url id="url" action="GCetl mge">
<s: par am nanme="product | d" >
<s:property val ue="#product.id"/>
</ s: par anp
</s:url>
<ing src="<s:property value="#url"'/>"
wi dt h="100" hei ght="50"/>
</td>
</tr>
</s:iterator>
</tabl e>
</ di v>
</ body>
</htm >

A product may have an image stored in the images directory of the application. A product
image is named according to the product identifier in a web-friendly format (one of jpeg,
gif, or png). For product identifier 3, the image name would be 3.gif or 3.jpg or 3.png.
Because the image file name is not stored, you have to find a way to display the image.

The Getlmage action flushes an image to the browser. Note that in the Product.jsp page
the iterator tag contains an img element whose source is a URL that references to the
Getlmage action and passes a productld parameter.

Now, let's focus on the GetlmageAction class in Listing 13.8.

Listing 13.8. The GetlmageAction class

package appl3b;

i mport java.io.| OException;

i nport java.io.lnputStream

inport java.io.File;

i mport java.io.FilelnputStream

i mport javax.servlet. Servl et Cont ext;

i mport javax.servlet.http. HtpServl et Response;

i nport org. apache. struts2. Servl et Acti onCont ext ;

i nport org. apache. struts2. di spat cher. StreanResul t;

i mport org.apache. struts2.interceptor. Servl et ResponseAwar e;
i mport org.apache.struts2.util. Servl et Cont ext Anar e;

i nport com opensynphony. xwor k2. Acti onCont ext ;
i nport com opensynphony. xwor k2. Acti onSupport;
i mport com opensynphony. xwor k2. Resul t;

public class GetlmageActi on extends ActionSupport inplenents

Ser vl et ResponseAwar e, Ser vl et Cont ext Aware {

private String productld;
private Hit pServl et Response servl et Response;
private Servl et Context servletContext;
public void setServl et Response(HttpServl et Response
servl et Response) {
this.servl et Response = servl et Response;

public void set Servl et Cont ext (Servl et Context servletContext) {
this.servl et Context = servl et Context;

public I nputStream getlnputStrean() throws Exception {
String content Type = "inmage/gif";
String i mageDirectory =
ser vl et Cont ext . get Real Pat h("i nages") ;
/1 The inmages can be a jpg or gif,
[l retrieve default inmage if no file was found
File file = new File(imgeDi rectory, productld + ".gif");
if ('file.exists()) {
file = new File(imageDirectory, productld + ".jpg");
content Type = "inmage/|j peg";

}
if (!file.exists()) {
file = new File(inmageDirectory, "noimge.jpg");

}
if (file.exists()) {
Result result = ActionContext.getContext().
get Acti onl nvocation().getResult();
if (result !'= null &% result instanceof StreanResult) {
StreanResult streanResult = (StreanResult) result;
streanResul t. set Cont ent Type(cont ent Type) ;
}
try {
return new Fil el nputStrean(file);
} catch (I OException ex) {
}

}

return null;

}

public String getProductld() {
return productld;
}

public void setProductld(String productld) {
this.productld = productld;
}

This class is similar to the FileDownloadAction class in appl3a. However, Getlmage
class has a productld property that is set by the productld request parameter. The
getlnputStream method retrieves the image as a file and wraps it in a FilelnputStream.

You can test this application by directing your browser to this URL.

http://1 ocal host: 8080/ appl3b/ Di spl ayProducts. acti on
You'll see something similar to Figure 13.2.

Figure 13.2. The images sent from the GetlmageAction object.
.!f

. Address |§§| http:/flocalhost: 8080/ appl 4b)/DisplayProduct s, action V| G0

A File Download - Microsoft Internet Explorer |Z||E|

File Edit W¥iew Favorites Tools Help

Products

Mame Picture

-
-

Television

Computer J:Ix

YCR ./

(¥ ¥ ¥
Game
Console

I@ Cone ‘_d Local intranet

Summary

In this chapter you have learned how file download work in web applications. You have also
learned how to select a file and sent it to the browser.

Chapter 14. Securing Struts Applications

Security is one of the most critical issues in web application development. As for servlet
applications, there are two ways to secure application resources, by configuring the
application and by writing Java code. The former is more popular because of its flexibility.
By editing your deployment descriptor (web.xml file), you can change your security policy
without rewriting code. For instance, you can restrict access to certain roles and HTTP
methods, determine how users can authenticate themselves, and so forth. Since Struts is
based on the Servlet technology, securing a Struts application will center on this
configuration plus the security feature in Struts itself.

To be good at security configuration, you need to be familiar with the concepts of principal
and roles, therefore this chapter starts with a discussion of both. Afterwards, the chapter
explains how to write a security policy and deals with authentication methods. After a
section on how to hide resources and another on Struts-specific security features, this
chapter concludes with the second way of security servlet applications: by writing code.

Principals and Roles

A principal is an entity which can be either an individual or an organization. A role is an
abstract grouping of users. Regard a role as a position. Vera, Chuck and Dave are users.
Administrator, Director, Manager, Programmer are roles. Any user can be in no role or in
many roles. For example, Vera can be in the Manager and Programmer roles, Chuck can be
in the Administrator role, and so on.

Every servlet container provides you with a different mechanism of managing users and
roles. You should consult the documentation that accompanies the servlet container on this.

In Tomcat you manage principal and roles in the tomcat-users.xml file under the conf
directory of the deployment directory. Here is an example of the tomcat-users-xml file.

<t ontat - user s>

<rol e rol ename="nmanager"/ >

<rol e rol enane="adm n"/ >

<user usernanme="vera" password="arev" rol es="nanager"/>

<user usernanme="chuck" password="chuck" rol es="adm n"/>

<user usernanme="dave" password="secret" rol es="manager, adm n"/>
</tontat - user s>

The file says that there are two roles (admin and manager) and three users (vera, chuck,
and dave). You can add as many roles and users as you want to the tomcat-users.xml file.

Writing Security Policies
Writing a security policy involves the following tasks:

e Protecting resources
e Determining the login method for user authentication.

These tasks are discussed in the following subsections.
Protecting Resources

You enforce the security policy by using the security-constraint element in the
deployment descriptor. Here is the description of this element.

<! ELEMENT security-constraint (display-nane?,
web-resource-col | ection+, auth-constraint?,
user - dat a-constraint ?)>

This means that the security-constraint element can have an optional display-name
subelement, one or many web-resource-collection subelements, an optional auth-
constraint subelement, and an optional user-data-constraint subelement.

You specify the set of web resources that you want to protect in the web-resource-
collection element, and you use the auth-constraint element to define the user roles
allowed to access them. The subelements are described further below.

You use the web-resource-collection element to specify which resources must be

protected by specifying a URL pattern for those resources. In addition, you can also specify
what HTTP methods (GET, POST, etc) should be allowed access to the protected resources.

The web-resource-collection element can have the following subelements.

e web-resource-name. A resource identifier. This element is required.
e decription. A description of the resource. This element is optional.

e url-pattern. Specifies a URL pattern which the restriction must be applied to. There
can be zero or more url-pattern elements in a web-resource-collection element.

For example, if you want to protect the resources in the members and trading
directories, you need two url-pattern elements.

¢ http-method. Specifies the restricted method. For example, if the value of the
http-method element is GET, then all GET requests will be restricted.

The auth-constraint element can have the following subelements.

e description. A description. This is an optional element.
e role-name. The user role allowed access to the restricted resource. There can be
zero to many role-name elements in an auth-constraint element.

The user-data-constraint element can contain the following elements:

e description. A description. This is an optional subelement.

e transport-guarantee. The possible values are NONE, INTEGRAL,
CONFIDENTIAL. NONE means the application does not require any transport
guarantees. INTEGRAL means the data must be transported in such a way that it
cannot be changed in transit. CONFIDENTIAL means that the transmitted data
must be encrypted.

The following is a security-constraint element.

<security-constraint>
<web-resource-col | ecti on>
<web- r esour ce- nane>Manager Ar ea</ web-resour ce- nane>
<url - pattern>/ manager/*. do</url -pattern>
</ web-resource-col | ecti on>
<aut h- constrai nt >
<r ol e- nane>nanager </ r ol e- nane>
</ aut h-constrai nt >
</ security-constraint>

The security-constraint element will cause the web container to block any request that
match the pattern /manager/*.do that does not come from a user belonging to the
manager role. Because no http-method element is used, the web container will attempt to
block all requests regardless the HTTP method being used to access the resource.

In addition, you should also register all roles used to access the restricted resources by
using the security-role element. Inside a security-role element, you write a role-name
element for each role. For example, the following security-role element defines two roles,
admin and manager.

<security-rol e>
<r ol e- nane>adm n</r ol e- nane>
<r ol e- nane>manager </ r ol e- nane>
</ security-rol e>

Specifying the Login Method

After you specify which resources are restricted and which roles may access them, you must
specify how a user can login to prove that he or she is in the allowed role(s). You specify
the login method by using the login-config element. Here is the description of the login-
config element.

<! ELEMENT 1| ogi n-confi g (auth-nethod?, real mnane?,
form | ogi n-config?)>
<! ELEMENT aut h- net hod (#PCDATA) >
<! ELEMENT real m nane (#PCDATA) >
<I ELEMENT form| ogin-config (forml ogin-page, formerror-page)>

The auth-method element specifies the method for authenticating users. Its possible
values are BASIC, DIGEST, FORM, or CLIENT-CERT. The next section,

"Authentication Methods," explains more about these methods.

The realm-name element specifies a descriptive name that will be displayed in the
standard Login dialog when using the BASIC authentication method.

The form-login-config element is used when the value of <auth-method= is FORM. It
specifies the login page to be used and the error page to be displayed if authentication
failed.

Here is a login-config element.

<l ogi n-confi g>

<aut h- net hod>BASI C</ aut h- net hod>

<real m name>User Basi c Aut henticati on</real mnane>
</l ogi n-confi g>

Authentication methods are the subject of discussion on the next section.

Authentication Methods

There are several authentication methods: basic, form-based, digest, Secure Socket Layer
(SSL), and client certificate authentication. With the basic authentication, the web container
asks the browser to display the standard Login dialog box which contains two fields: the
user name and the password. The standard Login dialog box will look different in different

browsers. In Internet Explorer, it looks like the one in Figure 14.1

Figure 14.1. The standard Login dialog box in Internet Explorer

Connect to localhost

Iser Basic Authentication

Lser name: | £ | w |

Passward: | |

[1remember my passward

[OF l [Cancel

If the user enters the correct user name and password, the server will display the requested
resource. Otherwise, the Login dialog box will be redisplayed, asking the user to try again.
The server will let the user try to log in three times, after which an error message is sent.
The drawback of this method is that the user name and password are transmitted to the
server using base64 encoding, which is a very weak encryption scheme. However, you can
use SSL to encrypt the user's credential.

Form-based authentication is similar to Basic authentication. However, you specify a login
page yourself. This gives you a chance to customize the look and feel of your login dialog.
This authentication method will also display a custom Error page written by the developer
on a failed attempt to login. Again, you can use SSL to encrypt users' credentials.

Digest authentication works like Basic authentication; however, the login information is not
transmitted. Instead, the hash of the passwords is sent. This protects the information from
malicious sniffers.

Basic and digest authentication methods are specified in RFC 2617, which you can find at
ftp://ftp.isi.edu/in-notes/rfc2617.txt. More information about SSL can be found at

http://home.netscape.com/eng/ssl3/3-SPEC.HTM.

The following subsections provide examples of the basic and form-based authentication
methods.

Note

There are two possible error messages with regard to authentication, 401 and 403. The user
will get a 401 if he or she cannot supply the correct user name and password of any user. A
user is normally given three chances, but this is browser specific. The user will get a 403 if

he or she can enter the correct user name and password of a user but the user is not in the
allowed role list.

Using Basic Authentication

The appl4a application presents an example of how to use basic authentication. There are
two actions defined, User_input and User, as shown in Listing 14.1.

Listing 14.1. Action declarations

<package nanme="appl4a" extends="struts-defaul t">
<action nane="User i nput">
<resul t>/jsp/ User.jsp</result>
</ action>

<action nane="User" class="applb5a. User">
<resul t>/j sp/ Thanks. j sp</resul t>
</ action>
</ package>

What is special is the way these resources are protected using configuration in the web.xml
file, which is shown in Listing 14.2.

Listing 14.2. The deployment descriptor (web.xml file)

<?xm version="1.0" encodi ng="1 SO 8859-1"7?>
<web-app xm ns="http://java. sun.conf xm / ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schemna- i nst ance"
xsi :schemaLocati on="http://java. sun.conf xm / ns/javaee
http://java. sun.conf xm / ns/javaee/ web-app_2_5. xsd"
version="2.5">

<filter>
<filter-name>struts2</filter-nane>
<filter-
cl ass>org. apache. struts2. di spatcher. FilterDi spatcher</filter-
cl ass>
</filter>
<filter-mappi ng>
<filter-name>struts2</filter-nane>
<url-pattern>/*</url-pattern>
</filter-nmappi ng>

<l-- Restrict direct access to JSPs.
For the security constraint to work, the auth-constraint
and | ogin-config el ements must be present -->
<security-constraint>
<web-r esource-col | ecti on>
<web- r esour ce- name>JSPs</ web- r esour ce- nane>
<url-pattern>/jsp/*</url-pattern>
</ web-resource-col | ecti on>
<aut h-constrai nt/ >
</ security-constraint>

<security-constraint>
<web-resource-col | ecti on>
<web-r esour ce- nane>Adm n Ar ea</ web-r esour ce- nane>
<url-pattern>/User _input.action</url-pattern>
<url -pattern>/User.action</url-pattern>
</ web-resource-col |l ecti on>
<aut h-constrai nt >
<r ol e- nane>adm n</r ol e- name>
</ aut h-constrai nt >
</ security-constraint>
<l ogi n-confi g>
<aut h- net hod>BASI C</ aut h- nret hod>
<r eal m nane>User Basi ¢ Aut henti cati on</real m name>
</l ogi n-confi g>
<security-rol e>
<r ol e- nane>adm n</ r ol e- name>
</security-rol e>

<error-page>
<error-code>403</ error-code>
<l ocation>/403. ht Ml </ | ocati on>
</ error-page>
</ web- app>

Pay attention to the sections in bold. Practically, the URLs for invoking the two actions are
protected. Using Tomcat with the following tomcat-users.xml file, you know that the
actions can be accessed by Chuck and Dave, but not by Vera.

<?xm version='"1.0" encoding="utf-8 ?>
<t ontat - user s>
<rol e rol enane="rmanager"/ >
<rol e rol enane="adm n"/ >
<user usernanme="vera" password="arev" rol es="nmanager"/>
<user usernane="dave" password="secret" rol es="nanager,admn"/>
<user usernanme="chuck" password="chuck" rol es="adm n"/>
</tonctat - user s>

Only users in the admin role can access it. Use this URL to test it:

http://1 ocal host: 8080/ appl4a/ User i nput. action

The first time you try to access this resource, you'll see a Basic authentication page that
prompts you to enter the user name and password. If you do not enter the user name and
password of a user in the admin role, you'll get a 403 error. The error-page section in the
web.xml file tells the servlet container to display the 403.html file upon a 403 error
occurring. Without the error-page declaration, you'll get a standard servlet container error

page, as shown in Figure 14.2.

Figure 14.2. Tomcat default error page

3 Apache Tomcat/6.0.10 - Error report - Microsoft Inte... |Z||E|[z|
o

File Edit Wiew Favorites Tools Help

[L]
: Address |S§| http:fflocalhost: 3050/ app15a/User_input, action Vl Go

P

HTTP Status 403 - Access to the

requested resource has been denied

ATE Status report

=tz le g Access to the requested resource has been denied

Access to the specified resource (Access to the regquested
resource has been denied) has been forbidden, =5

I:El Ciore ‘ﬂ Local intranet

You can use the following URL to test the application.

http://1 ocal host: 8080/ appl4al/ di spl ayAddOr der For m do

Figure 14.3. Custom error page

M Access error - Microsoft Internet Explorer

File Edit \Wiew Favorites Tools Help

. Address |@ hkkp: f flocalhost: 8080 app15a/User_input, action b | Go

You do not have pertmission to enter this area.

@ Ciore ‘ﬂ Local inkranet

Using Form-Based Authentication

The appl4b application is similar to appl4a, except that appl4b uses form-based
authentication. Listing 14.3 shows the web.xml file.

Listing 14.3. The web.xml file for appl14b

<?xm version="1.0" encodi ng="1 SO 8859-1"7?>
<web-app xm ns="http://java. sun.conf xm / ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://java. sun.conf xm / ns/javaee
http://java. sun.conf xm / ns/javaee/ web-app_2_5. xsd"
version="2.5">

<filter>
<filter-name>struts2</filter-nane>
<filter-
cl ass>org. apache. struts2. di spatcher. FilterDi spatcher</filter-
cl ass>
</[filter>
<filter-mappi ng>
<filter-name>struts2</filter-nane>
<url-pattern>/*</url-pattern>
</filter-nmappi ng>

<l-- Restrict direct access to JSPs.
For the security constraint to work, the auth-constraint
and | ogin-config el ements nmust be present -->
<security-constraint>
<web-resource-col | ecti on>

<web- r esour ce- nane>JSPs</ web- r esour ce- name>
<url-pattern>/jsp/*</url-pattern>
</ web-resource-col |l ecti on>
<aut h-constraint/>
</ security-constraint>

<security-constraint>
<web-resource-col | ecti on>
<web- r esour ce- nanme>Admi n Ar ea</ web- r esour ce- nane>
<url-pattern>/User_input.action</url-pattern>
<url -pattern>/User.action</url-pattern>
</ web-resource-col |l ecti on>
<aut h- constr ai nt >
<r ol e- nane>admni n</r ol e- nane>
</ aut h-constrai nt >
</ security-constraint>
<l ogi n-confi g>
<aut h- net hod>FORM</ aut h- net hod>
<f orm | ogi n-confi g>
<f orm | ogi n- page>/1 ogi n. ht M </ f orm | ogi n- page>
<formerror-page>/loginError. htm </formerror-page>
</forml ogi n-config>
</l ogi n-confi g>
<security-rol e>
<r ol e- nane>adni n</r ol e- nane>
</security-rol e>
<error-page>
<error-code>403</error-code>
<l ocati on>/ 403. ht Ml </ | ocati on>
</ error-page>

</ web- app>

For the login form, the user name field must be j usemame, the password field must be

j_password, and the form's action must be j_security_check. Listing 14.4 presents
the login form used in app14b.

Listing 14.4. The login page in appl4b

<htm >
<title>Aut hentication Fornx/title>
</ head>
<body>
<f orm net hod="post" action="j security check">
<t abl e>
<tr>
<td col span="2">Logi n: </td>
</tr>
<tr>
<td>User Nane:</td>
<td><i nput type="text" nanme="j usernane"/></td>
</tr>
<tr>
<t d>Password: </t d>
<td><i nput type="password" nane="j password"/></td>
</[tr>
<tr>
<t d><i nput type="submt"/></td>
<td><i nput type="reset"/></td>
</tr>
</ tabl e>
</fornme
</ body>
</htm >

You can test the appl4b application using the following URL:

http://1 ocal host: 8080/ appl4b/ User i nput.action

Like the appl4a appHcation, Chuck and Dave can access the restricted resources but Vera
cannot.

The first time you request the action, you'll see the login page in Figure 14.4.

Figure 14.4. The Login page

‘2 Authentication Form - Microsoft Internet Explo... g@g|

File Edit VWiew Faworites Tools Help '*,"

. Address @:{ hktp:fflocalhost: 8080/ appl ShfUser_input.action % G0

~
Logn: i
Uszer IMarme:

Password: _

[Subrmit Query] [Feset]

&] Dore %J Local intranet

There are two error pages provided in appl4b. The loginError.html, declared in the
web.xml file, is shown if the user cannot enter the correct user name and password. The
403.html file is shown if the user can produce a correct user name and password but the
user is not on the allowed role list

Hiding Resources

An observant reader would notice that all access should go through the Struts action servlet
and JSPs should not be accessible directly. Protecting JSPs from direct access can be easily
achieved in several ways.

1. By placing the resources, i.e. JSPs, under WEB-INF, which makes the JSPs not
accessible by typing their URLs. This way, the JSPs can only be displayed if they are
a forward destination from the action servlet. However, you have also noticed that
throughout this book all JSPs are not in the WEB-INF directory. This is because
some containers (such as WebLogic) will not be able to forward control to a JSP
under WEB-INF. Storing JSPs in WEB-INF may also change how other resources,
such as image and JavaScript files, can be referenced from the JSPs.

2. By using a filter to protect the JSPs outside the WEB-INF directory. It is easy to
implement such a filter. All you need to do is apply the filter so that it will redirect
access to a user page if the URL ends with .jsp. However, this is not as easy as the
trick explained in Step 3.

3. By using the security-constraint element in the web.xml file to protect all JSPs
but without providing a legitimate user role to access them. For example, in both
appl4a and appl4b, you have two security-constraint elements in the web.xml
files. One to prevent all JSPs from being accessed directly, another to protect
actions.

<security-constraint>
<web-resource-col |l ecti on>
<web-r esour ce- nane>
Direct Access to JSPs
</ web-r esour ce- nane>
<url-pattern>*.jsp</url-pattern>
</ web-resource-col | ecti on>
<aut h-constrai nt>
<r ol e- nane>none</ r ol e- nane>
</ aut h-constrai nt >
</ security-constraint>
<security-constraint>
<web-resource-col | ecti on>
<web-r esour ce- nane>Adm n Ar ea</ web-r esour ce- nanme>
<url-pattern>/User_input.action</url-pattern>
<url -pattern>/User.action</url-pattern>
</ web-resource-col | ecti on>
<aut h-constrai nt>
<r ol e- nane>adm n</r ol e- name>
</ aut h-constrai nt >
</security-constraint>

All URLs ending with .jsp can only be accessed by users in the none role. If you do not have
a user in this role, no one can access the JSPs directly.

Struts Security Configuration

Struts adds a feature that allows you to specify which role(s) may access an action through
the Roles interceptor. This interceptor can accept these parameters:

¢ allowedRoles. A list of roles that are allowed to access the corresponding action.
Roles can be comma-delimited.

o disallowedRoles. A list of roles that are not allowed to access the corresponding
action. Roles can be comma-delimited.

The appl4c application provides an example of using the roles attribute. To be specific,

you use the deployment descriptor in Listing 14.5, in which you restrict access to all
URLs ending with .action, in effect restricting access to all Struts actions.

Listing 14.5. The deployment descriptor

<?xm version="1.0" encodi ng="1 SO 8859-1"?>
<web-app xm ns="http://java. sun.conf xm / ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schemna- i nst ance"
xsi :schemaLocati on="http://java. sun.conf xm / ns/javaee
http://java. sun.conf xm / ns/javaee/ web-app_2_5. xsd"
version="2.5">

<filter>
<filter-nanme>struts2</filter-nane>
<filter-
cl ass>org. apache. struts2. di spatcher. FilterDi spatcher</filter-
cl ass>
</[filter>
<filter-mappi ng>
<filter-name>struts2</filter-nane>
<url-pattern>/*</url-pattern>
</filter-nmappi ng>

<l-- Restrict direct access to JSPs.
For the security constraint to work, the auth-constraint
and | ogin-config el ements must be present -->
<security-constraint>
<web-r esource-col | ecti on>
<web- r esour ce- name>JSPs</ web- r esour ce- nane>
<url-pattern>/jsp/*</url-pattern>
</ web-resource-col | ecti on>
<aut h-constrai nt/ >
</ security-constraint>

<security-constraint>
<web-resource-col | ecti on>
<web-r esour ce- nane>Adm n Ar ea</ web-r esour ce- nane>
<url-pattern>*.action</url-pattern>
</ web-resource-col |l ecti on>
<aut h-constrai nt >
<r ol e- nane>adm n</ r ol e- name>
<r ol e- nane>nanager </ r ol e- nane>
</ aut h-constrai nt >
</ security-constraint>
<l ogi n-confi g>
<aut h- net hod>BASI C</ aut h- nret hod>
<r eal m nane>User Basi ¢ Aut henti cati on</real m name>
</l ogi n-confi g>
<security-rol e>
<r ol e- nane>adm n</ r ol e- name>
<r ol e- name>manager </ r ol e- name>
</security-rol e>
</ web- app>

You also specify that two roles may access the application, admin and manager.

Now, you have the following actions in the appl4c application: User_input and User. You
want both to be accessible by all managers and admins. The elements shown in Listing
14.6 shows you how to declare the actions and interceptors in both actions.

Listing 14.6. Action declarations

<package name="appl4c" extends="struts-default">
<action name="User _input">
<interceptor-ref name="conpl et eSt ack"/>
<interceptor-ref name="rol es">
<par am nanme="al | owedRol es" >adni n, manager </ par an»
</interceptor-ref>
<resul t>/jsp/ User.jsp</result>
</ action>
<action nane="User" class="appl4c. User">
<interceptor-ref name="conpl et eSt ack"/>
<interceptor-ref nane="rol es">
<par am nane="al | owedRol es" >adni n, manager </ par an»
</interceptor-ref>
<resul t >/ sp/ Thanks. j sp</resul t>
</ action>
</ package>

To test the appl4c application, direct your browser to this URL.

http://1 ocal host: 8080/ appl4c/ User i nput.action

Programmatic Security

Even though configuring the deployment descriptor and specifying roles in the tomcat-
users.xml file means that you do not need to write Java code, sometimes coding is
inevitable. For example, you might want to record all the users that logged in. The
javax.servlet.http.HttpServletRequest interface provides several methods that enable
you to have access to portions of the user's login information. These methods are
getAuthType, isUserInRole, getPrincipal, and getRemoteUser. The methods are
explained in the following subsections.

The getAuthType Method

The getAuthType method has the following signature.

public String getAut hType()

This method returns the name of the authentication scheme used to protect the servlet. The
return value is one of the following values: BASIC_AUTH, FORM_AUTH,
CLIENT_CERT_AUTH, and DIGEST_AUTH. It returns null if the request was not
authenticated.

The isUserInRole Method

Here is the signature of the isUserInRole method.

public bool ean isUserlnRol e(String role)

This method indicates whether the authenticated user is included in the specified role. If the
user has not been authenticated, the method returns false.

The getUserPrincipal Method

The signature of getUserPrincipal is as follows.

public java.security.Principal getUserPrincipal()

This method returns a java.security.Principal object containing the name of the current
authenticated user. If the user has not been authenticated, the method returns null.

The getRemoteUser Method

The getRemoteUser method has the following sighature.

public String get RenoteUser ()

This method returns the name of the user making this request, if the user has been
authenticated. Otherwise, it returns null. Whether the user name is sent with each
subsequent request depends on the browser and type of authentication.

Summary

In this chapter, you have learned how to configure the deployment descriptor to restrict
access to some or all of the resources in your servlet applications. The configuration means
that you need only to modify your deployment descriptor file—no programming is
necessary. In addition, you have also learned how to use the roles attribute in the action
elements in your Struts configuration file.

Writing Java code to secure Web applications is also possible through the following methods
of the javax.servlet.http.HttpServiletRequest interface: getRemoteUser, getPrincipal,
getAuthType, and isUserlInRole.

Chapter 15. Preventing Double Submits

Double form submits normally happen by accident or by the user's not knowing what to do
when it is taking a long time to process a form. Some double submits have fatal
consequences, some simply unpleasant. For instance, when submitting an online payment in
which a credit card will be charged, the user may click the submit button for the second
time if the server's response time is too slow. This may result in his/her credit card being
charged twice. Other less critical examples include forms that add a new product and doubly
submitting these forms will cause a product to be added twice.

Browsers' behaviors are different with regard to preventing double submits. Mozilla Firefox
will not respond to subsequent clicks on the same button, providing you with some kind of
protection. Other browsers, including Internet Explorer, do not yet implement the feature to
prevent double submits. In addition, in Mozilla and non-Mozilla browsers, if the user presses
the browser Refresh/Reload button after the request is processed, the same request will be
submitted again, effectively causing double submits. As such, you should always take action
if double submits may cause inadvertent consequences in your business logic.

Struts has built-in support for preventing double submits. It employs a technique that you
can also find in other web application development technologies. This technique involves
storing a unique token in the server and inserting a copy of the token into a form. When the
form is submitted, this token is also sent to the server. The server application will compare
the token with its own copy for the current user. If they match, form submission is
considered valid and the token is reset. Subsequent (accidental) submits of the same form
will fail because the token on the server have been reset.

This chapter explains how to use Struts' built-in feature for preventing double submits.

Managing Tokens

Struts provides the token tag that generates a unique token. This tag, which must be
enclosed in a form tag, inserts a hidden field into the form and stores the token in the
HttpSession object. If you use the debug tag on the same page as the form, you'll see a
session attribute session.token with a 32 character value.

The use of token must be accompanied by one of two interceptors, Token and Token
Session, that are capable of handling tokens. The Token interceptor, upon a double submit,
returns the result "invalid.token" and adds an action error. The default message for this
error is

The form has al ready been processed or no token was supplied, please
try again.

This is confusing for most users. Should they try again by resubmitting the form? Hasn't the
form been processed?

To override the message, you can create a validation file and add a value for the key
struts.messages.invalid.token. The supporting class for the Token interceptor is
org.apache.struts2.interceptor.Tokenlnterceptor. Therefore, to override the message, you

must place your key/value pair in a Tokenlnterceptor.properties file and place it under this
directory:

/ VEEB- | NF/ cl asses/ or g/ apache/ struts2/interceptor

The Token Session interceptor extends the Token interceptor and provides a more
sophisticated service. Instead of returning a special result and adding an action error, it
simply blocks subsequent submits. As a result, the user will see the same response as if
there were only one submit.

The following sections provide examples on both interceptors.

Using the Token Interceptor

The appl5a application shows how you can use the Token interceptor. The directory
structure of appl15a is shown in Figure 15.1.

Figure 15.1. appl15a directory structure

E applsa
+ [= 55
== Isp
=| Errar.jsp
|=| Pavment.jsp
|=| Thanks.jsp
== WEE-IMF
== rclasses
+-[= appl5a
== org
-l apache
=|-[-=% skruksz
== intercepkar
TokenInkerceptar, properties
=| skruts. il
+- == lib

=| web.xml

There are two actions in the application, Pay_input and Pay. The declarations for these

actions are shown in Listing 15.1. Pay_input displays the Payment.jsp page, which
contains a form to take payment details. Submitting the form invokes the Pay action. The
Pay action is protected by the Token interceptor.

Listing 15.1. The action declarations

<package nanme="applb5a" extends="struts-default">
<action nane="Pay_i nput">
<resul t>/jsp/ Paynent.jsp</resul t>
</ action>
<action nane="Pay" class="appl5a. Paynent">
<interceptor-ref name="token"/>
<interceptor-ref nanme="basi cStack"/>
<result name="invalid.token">/jsp/Error.jsp</result>
<result nanme="input">/jsp/Paynent.jsp</result>
<resul t >/ sp/ Thanks. j sp</resul t>
</ action>
</ package>

The Pay action provides three results. The invalid.token result, executed if a token is
invalid, forwards to the Error.jsp page. The input result, which will be executed if input
validation failed, forwards to the Payment.jsp page. Finally, the success result forwards to
the Thanks.jsp page.

Listing 15.2. The Payment action class

package applb5a;
i nport java.util.ArraylList;
i mport java.util.List;

i mport com opensynphony. xwor k2. Acti onSupport;
public class Paynent extends ActionSupport {
private doubl e anount;
private int creditCardType;
private String nameOnCard;
private String numnber;
private String expiryDate;

/1l getters and setters not shown

public String execute() {
/1 sinulate a | ong processing task
try {
Thr ead. sl eep(4000) ;
} catch (InterruptedException e) {

}
return SUCCESS;

The Pay action uses the Payment class in LISting 15.2 as its action class. The class
simulates a long processing task that will take four seconds, giving you a chance to double
submit the form.

The Tokenlnterceptor.properties file in Listing 15.3 overrides the message upon an
invalid token. The Payment.jsp page, the Error.jsp page, and the Thanks.jsp page are

shown in Listings 15.4, 15.5, and 15.6, respectively.

Listing 15.3. The Tokenlnterceptor.properties file

struts. nessages. i nvalid.token=You have subnitted the formthe second
time. Please contact the adm nistrator.

Listing 15.4. The Payment.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Check out</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;
}

</styl e>
</ head>
<body>
<div id="global" style="w dt h: 350px" >
<h3>Pl ease enter the anpunt and your credit card detail s</h3>
<s:form action="Pay">
<s:token/>
<s:textfield nane="anount" | abel =" Anount"/>
<s:sel ect nane="creditCardType" |abel="Credit Card"
l[ist="#{"1:"Visa', '2':'Mastercard', '3':'Anmerican Express'}"/>
<s:textfield nane="nanmeOnCard" | abel ="Nanme on Credit Card"/>
<s:textfield nane="nunber" | abel ="Credit Card Nunber"/>
<s:textfield nane="expiryDate" |abel ="Expiry Date (miyy)"/>
<s:submt/>
</s:fornmp
</ di v>
</ body>
</htm >

Listing 15.5. The Error.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Thank you</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<di v id="gl obal ">
<s:actionerror/>
</ div>
</ body>
</htm >

Listing 15.6. The Thanks.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<htm >

<head>

<title>Thank you</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>

<di v id="gl obal ">

Thank you. We will ship your order wi thin 24 hours.
</ div>

</ body>

</htm >

To test this application, direct your browser to this URL.

http://1 ocal host: 8080/ appl5a/ Pay i nput.action

Figure 15.2 shows the form.

Figure 15.2. The Payment form

2l Check out - Microsoft Internet Explorer |:||E||E|
Fil: Edit Wew Favorites Tools Help]

. Address |@ htkp: fflocalhost: 5080 app1SaiPay_input, ackion % | Go

Please enter the amount and
your credit card details

Amount: | |

Credit Card: Visa v/

Mame on Credit | |
Card:

Credit Card Number: | |

Expiry Date | |
(mmyfyy).

@ Done "ﬂ Local inkranet

Click the Submit button and quickly click it again. You will see an error message displayed
on your browser.

Using the Token Session Interceptor

The appl5b application illustrates the use of the Token Session interceptor. This example is
very similar to appl15a, however there is no longer a properties file for handling error
messages or a JSP for displaying an error message. Figure 15.3 shows the directory
structure of appl15b.

Figure 15.3. app15b directory structure

'[,_:'—‘f- applsh
+-[s
=l [= isp
|=| Payment.isp
|| Thanks.jsp
|- WEB-INF
== classes
== applSh
fﬁ'p Payment.class
|Z| skruts.zmi
+-[= lib

|=| web.xml

Listing 15.7 shows the action declarations. Instead of the Token interceptor for the Pay
action, we use the Token Session interceptor. The JSPs are the same as those in appl5a
and will not be reprinted here.

Listing 15.7. The action declarations of appl5b

<package nanme="appl5b" extends="struts-default">
<action nane="Pay_i nput">
<resul t>/jsp/ Paynent.jsp</result>
</ action>
<action nane="Pay" class="appl5b. Paynent">
<interceptor-ref name="t okenSession"/>
<interceptor-ref nanme="basicStack"/>
<result nanme="invalid.token">/jsp/Error.jsp</result>
<result nanme="input">/jsp/Paynent.jsp</result>
<resul t >/ sp/ Thanks. j sp</resul t>
</ action>
</ package>

To test this application, direct your browser to this URL.

http://1 ocal host: 8080/ appl5b/ Pay i nput. action

Summary

Double form submits normally happen by accident or by the user’'s not knowing what to do
when it is taking a long time to process a form. The technique to prevent a form from being
submitted twice is by employing a token which is reset at the first submit of a form. Struts
has built-in support for handling this token, through the token tag and the Token and
Token Session interceptors.

Chapter 16. Debugging and Profiling

This chapter discusses two related topics that can help you debug your application,
debugging and profiling. Debugging is made easy by the introduction of the debug tag in
the Struts tag library and the Debugging interceptor. Profiling lets you profile your
application courtesy of the Profiling interceptor.

This chapter starts with the debug tag and proceeds with the Debugging interceptor. It
then concludes with profiling.

The debug Tag

The debug tag displays the content of the Value Stack and other objects. Using debug is a
no-brainer as you need only write:

<s: debug/ >

This tag has one attribute, id, but you hardly need to use it.
The code in Listing 16.1 is a JSP that uses a debug tag.

Listing 16.1. The Debug.jsp page

<U@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>debug Tag Exanple</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<s: debug/ >
</ body>
</htnm >

You can direct your browser to this URL to test the debug tag.

http://1 ocal host: 8080/ appl6a/ Debug. acti on

The page in Figure 16.1 shows how the tag is initially rendered.

Figure 16.1. The Debug tag

& debug Tag Example - Microsoft Internet E... |Z||E||E|
File Edit Wiew Favorites Tools Help k

. Address |@ btk flocalhost: 30800 app 1 6ajDebug, ackion V| 30
[Cehug]

@ Dane ‘ﬂ Local intranet

If you click the [Debud] link, you'll see the stack objects and the objects in the context
map, as shown in Figure 16.2.

Figure 16.2. Useful information for debugging

A debug Tag Example - Microsofl Internet Explorer g@lgl

© Bl Eder Wew Favorites ook Help "

: Agdress -E:I bt fflocalbost 8060/ app 1 6aDebug action Sl = B
[Debug] -~

Struts ValueStack Debug

Value Stack Contents

Object Property Property

Name Value

texts nl|
actionErrors N
errors {1

appl6a. DebugTestAction fieldErrors {1
errorMessages []
locale er_S
actioniMessages []

com. opensymphony. xwork2. DefaultTextProvider texts null

Stack Context

These fems are available using the #key rolation
Key

com.opensymphony. xwork2, dispatcher HttpServletRequest org.apache. st
com.opensymphony. xwork2, ActionContext.locale en_US
com.opensymphony. xwork2. dispatcher.HttpServlietResponse org.apache.ca
com.opensymphony, xwork2, ActionContext, name Debug

{org, apache. §i
org. apache, Ar
org.apache.ca »

>

Wl Lecal intranet

LS

You can use the debug tag to see the values of action properties and the contents of
objects such as the session and application maps. This will help you pinpoint any error in
your application quickly.

The Debugging Interceptor

The Debugging interceptor, which is part of the default stack, allows you to look into the
Value Stack and other objects. You can invoke this interceptor by adding debug=xml or
debug=console to the URL that invokes an action.

Appending debug=xml will result in an XML that contains the values of the Value Stack and
other objects, such as the following:

<debug>
<par anet ers/ >
<cont ext >
<attr/>
<report.conversion. errors>fal se</report.conversion. errors>
<struts.acti onMappi ng>
<cl ass>cl ass
or g. apache. strut s2. di spat cher. mapper. Acti onMappi ng</ cl ass>
<nanme>Debuggi ngTest </ nane>
<nanespace>/ </ nanespace>
</ struts. acti onMappi ng>
</ cont ext >
<request/>
<sessi on/ >
<val ueSt ack>
<val ue>
<actionErrors/>
<acti onMessages/ >
<anount >0. 0</ anount >
<cl ass>cl ass appl6a. Profiling</class>
<error Messages/ >
<errors/>
<fiel dErrors/>
<l ocal e>
<I S3Count r y>USA</ | SG3Count ry>
<| SLanguage>eng</ | S3Language>
<cl ass>cl ass java.util.Local e</cl ass>
<count ry>US</ country>
<di spl ayCount ry>Uni t ed St ates</di spl ayCountry>
<di spl ayLanguage>Engl i sh</ di spl ayLanguage>
<di spl ayNanme>Engl i sh (United States)</displayNane>
<di spl ayVari ant ></ di spl ayVari ant >
<l anguage>en</ | anguage>
<vari ant ></vari ant >
</l ocal e>
<transacti onType>0</transacti onType>
</ val ue>
<val ue>
<cl ass>cl ass
com opensynphony. xwor k2. Def aul t Text Provi der </ cl ass>
</val ue>
</ val ueSt ack>
</ debug>

Using debug=console displays a console like the one shown in Figure 16.3. You can
enter an OGNL expression to the bottom of the page and the value will be displayed.

Figure 16.3. The OGNL console
%D http:#localhost:BOBO - OGNL Console - Mozilla Firefox

Welcome to the OGHNL console!
:-» debuyg

null

:-» userlame

null

r—» amount

0.0

=2

transaction

Done

Note

When | tested this feature, it did not work with Internet Explorer but worked perfectly with
Mozilla Firefox.

Profiling

Struts supports profiling that can potentially identify any bottleneck in your program. Struts
keeps track the time taken by its filter dispatcher, each interceptor, action execution, and
result execution with the help of a class called UtilTimerStack (a member of the
com.opensymphony.xwork?2.util.profiling package). By default, however, the profiling result
is not shown. The Profiling interceptor, which is part of the default stack, can help activate
profiling. When profiling is activated for a particular action, the profiling result is printed by
an internal logger in UtilTimerStack on the container console or to a log file, depending on
the setting of your container. If you're using Tomcat, this will be the console (on Windows)
or the catalina.out file (on Unix and Linux).

Here is an example of a profiling result for an action that uploads a file.

INFO [80ns] - FilterDi spatcher_doFilter
[40nms] - Handling request from Di spatcher
[Onms] - create Default Acti onProxy:
[Ons] - create DefaultActionlnvocation:
[Ons] - actionCreate: SingleUpload2
[40nms] - invoke:
[40nms] - interceptor: fileUpl oad
[20ms] - invoke:
[20n8] - interceptor: exception
[20m8] - invoke:
[20n8] - interceptor: servletConfig
[20ms] - invoke:
[20ms8] - interceptor: prepare
[20n8] - invoke:
[20nm8] - interceptor: checkbox
[20nm8] - invoke:
[20ms] - interceptor: parans
[10ms] - invoke:
[10ns8] - interceptor: conversionError
[10ms] - invoke:
[Onms] - invokeAction: Upl oad2
[10ms] - executeResult: success

Each line represents an activity. On the left of each line is the accumulated time taken to
invoke the activity. For example, the bottommost line says that executing the result took
10ms, whereas invoking the Upload2 action took Oms. Of course it does not mean that
there was no time at all to execute the action, it's just that it took less than what the timer
can measure.

The Conversion Error interceptor's accumulated time is also 10ms, which means the
invocation of this interceptor took Oms because the activities invoked after it consumed
10ms. The File Upload interceptor took 20ms to execute (40ms — 20ms), and so on.

There are a few ways to activate profiling. Once it is active, it will stay active until it's
turned off or until the application is restarted.

1. Through the request parameter, by adding profiling=true or profiling=yes to the URL
that invokes the action to be profiled. For this to take effect, the struts.devMode
property must be true. For example, this URL turns on profiling.

http://1 ocal host: 8080/ appl6al/ Test. acti on?profiling=true
To turn profiling off, use this URL.
http://1 ocal host: 8080/ appl6al/ Test. acti on?profiling=fal se

Note that "profiling" is the default profiling key defined in the Profiling interceptor.
You can override this if you have to, for example because you have a form input with
the same name, by using the param element. For instance, this changes the profiling

key to pf so that you can turn on and off profiling by adding the request parameter
pf=true or pf=false.

<action name="ProfilingTest" class="appl6a.Profiling">
<interceptor-ref nane="profiling">
<par am nane="profil i ngKey" >pf </ par ane
</interceptor-ref>
<interceptor-ref name="basicStack"/>
<result>/jsp/ OK.jsp</result>
</ action>

2. By setting the active property of the UtilTimerStack object through code in a servlet
listener or your action method.

public String execute() {
Util Ti mer St ack. set Active(true);

/1 do something
return SUCCESS;

}
3. By setting the UtilTimerStack.ACTIVATE_PROPERTY to true:

System set Property(Util Ti ner St ack. ACTI VATE_PROPERTY, "true");

You can also monitor a certain activity in your action code. To do this, you need to call the
push and pop methods on UtilTimerStack:

String activityName = "database access";
Util Ti mer Stack. push(activityNane);

try {
// do sone code

} finally {
Util Ti mer Stack. pop(activityNane);
}

Summary

This chapter discusses two important topics that can help you make more robust
applications, debugging and profiling. For debugging you use the debug tag and the
Debugging interceptor. Profiling is a bundled feature in Struts that just needs activation.
The Profiling interceptor can be used to activate profiling. Alternatively, you can use code to
activate it.

Chapter 17. Progress Meters

What do you do if one of your actions takes five minutes to complete and you don't want
your user worried or sleepy? Show a progress meter! In a web application writing a
progress meter is not an easy task, you would spend at least days on it. Happily, Struts has
an easy to use interceptor, Execute and Wait, that is good at emulating a progress meter
for heavy tasks.

This chapter shows you how to use this interceptor.

The Execute and Wait Interceptor

Time consuming tasks, ones that take minutes, should be handled differently in web
applications than they are in desktop programs. They pose more risks in the former because
HTTP connections may time out, something not possibly occurring in the latter.

The Execute and Wait interceptor was designed to handle such situations. Since it's not part
of the default stack, actions that need this interceptor must declare it and it must come last
after in the interceptor stack.

This interceptor runs on a per-session basis, which means the same user may not cause two
instances of this interceptor (recall that each action has its own instance of any declared
interceptor) to run in parallel. An action backed by this interceptor will execute normally.
However, Execute and Wait will assign a background thread to handle the action and
forward the user to a wait result before the execution finishes and schedule the result to hit
the same action again. On subsequent requests, if the first action has not finished
executing, the wait result is sent again. If it has finished, the user will get a final result for
that action.

A wait result acts like a dispatcher result. However, the view it forwards to has this meta
tag that reloads the same URL after n seconds:

<neta http-equiv="refresh" content="n;url"/>

By default n is 5 and url is the same URL used to invoke the current action.

You can create your own wait view if you don't like the default. If no wait result is found
under the action declaration, the default will be used.

The Execute and Wait interceptor can take these parameters, all optional.

e threadPriority. The priority to assign the thread. The default value is
Thread.NORM_PRIORITY.

e delay. The number of milliseconds to wait before the user is forwarded the wait
result. The default is O.

o delaySleepinterval. Specifies the number of milliseconds the main thread (the one
that creates a background thread to handle the action) has to wake up to check if
the background process has been completed. The default is 100 and this parameter
only takes effect if the delay is not zero.

The delay can be used if you don't want to send the wait result right away. For example,
you can set it to 2,000 so that the wait result will only be sent if the action takes longer
than two seconds.

Let's have a look at two examples in the section to follow.

Using the Execute and Wait Interceptor
Two examples are given to illustrate how to use Execute and Wait to emulate a progress
meter. The first example uses the default wait result and the second uses a custom one.

Both examples use the action class shown in Listing 17.1.

Listing 17.1. The HeavyDuty action class

package appl7a;
i mport com opensynphony. xwor k2. Acti onSupport ;

public class HeavyDuty extends ActionSupport {
public String execute() {
try {
Thr ead. sl eep(12000) ;
} catch (Exception e) {

}
return SUCCESS;

}
private int conplete = 0;
public int getConplete() {
conpl ete += 10;
return conpl et e;

The execute method of the action class takes twelve seconds to complete, enough to show
off the progress meter. The complete field and its getter are only used by the second
example.

The action declaration for the first example is given in Listing 17.2.

Listing 17.2. The action declaration for the first example

<package name="appl7a" extends="struts-default">
<action nane="HeavyDutyl" class="appl7a. HeavyDuty">
<i nterceptor-ref name="defaultStack"/>
<interceptor-ref name="execAndWait">
<par am nane="del ay" >1500</ par an®
</interceptor-ref>
<result>/jsp/ OK.jsp</result>
</ action>
</ package>

Since Execute and Wait is not part of the default stack, you must declare it explicitly and it
must be the last interceptor to run. No wait result is declared and the final result is a
dispatcher that forwards to the OK.jsp page. The delay is set to 1,500 milliseconds, which
means the wait result will be sent after 1,5 seconds.

To test the example, direct your browser to this URL.

http://1 ocal host: 8080/ appl7a/ HeavyDutyl. acti on

The wait page is shown in Figure 17.1. Pretty standard and uninspiring.

Figure 17.1. The standard wait page

2 http:/localhost: B0BO/app1 Ta/HeavyDuty1.action -... |Z||E|rg|
i

: File Edit VMiew Favorites Tools Help ks
: Address !SEJ http: flocalhost: 3080/ appl 7afHeavyDuby 1 action v | Go

Pleasze wait while we process your recquest. .

This page will reload automatically and display vour request
when it i completed.

I@ Done ‘ﬂ Local inkranet

If you're interested enough to check, you'll see the source of the wait page as follows.

<ht m >
<head>
<nmeta http-equiv="refresh"
content="5; url =/ appl7al/ HeavyDutyl. acti on"/ >
</ head>
<body>
Pl ease wait while we process your request...
<p/ >
This page will reload automatically and di splay your request
when it is conpleted.
</ body>
</htm >

Notice the meta tag? That's the one that forces the page to refresh every five seconds.

Using A Custom Wait Page

The second example is similar to the first one and uses the action class in Listing 17.1. 1t
also uses the complete property of the action class to show the progress to the user. The
second example also differs from the first in that it employs a custom wait page, as shown

in the action declaration in Listing 17.3.

Listing 17.3. The action declaration for the second example

<package nanme="appl7a" extends="struts-default">
<action nane="HeavyDuty2" class="appl7a. HeavyDuty">
<interceptor-ref nanme="defaul t Stack"/>
<interceptor-ref nane="execAndWait">
<par am nane="del ay" >1500</ par an®
</interceptor-ref>
<result name="wait">/jsp/Wait.jsp</result>
<result>/jsp/ OK.jsp</result>
</ action>
</ package>

Note that a wait result is present that forwards to a Wait.jsp page (See Listing 17.4). 1t
is an ordinary JSP that has a meta tag that refreshes the page every two seconds. Since the
URL part is not present in the meta tag, the same page will be reloaded.

Listing 17.4. The Wait.jsp page

<Yg@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<head>
<neta http-equiv="refresh" content="2;"/>
<title>Wait</title>
<style type="text/css">@nport url (css/main.css);</style>
<styl e>
.errorMessage {
col or:red;
}

</styl e>

</ head>

<body>

<div id="global" style="w dth: 350px" >

Pl ease wait... (<s:property val ue="conpl ete"/>% conpl ete)

</ di v>

</ body>

</htm >

Another thing to note is that it displays the value of complete. Its getter increments its
value by 10 every time it is called.

private int conplete = 0;
public int getComplete() {
compl ete += 10;
return conpl ete;

To test the example, direct your browser here.

http://1 ocal host: 8080/ appl7a/ HeavyDuty2. acti on

The wait page is shown in Figure 17.2. Notice that it looks more like a progress meter
that indicates how much progress is being made?

Figure 17.2. A custom wait page

2 Wait - Microsoft Internet Explorer |‘._||E”'£|
: File Edit View Favorites Tools Help ﬂ'
: Address ISE[http: fflocalbost: 30580/ appl 7a/HeavyDuky 2, action w | Go

Flease wait... (30% complete)

I@ Cone "ﬂ Local inkranet

Summary

This chapter discusses how you can use the Execute and Wait interceptor to handle time-
consuming tasks. The trick is to create a background thread that executes the action and
forward the user to a temporary wait page that keeps hitting the same action until the
background thread finishes its task.

Chapter 18. Custom Interceptors

There are more than a dozen default interceptors that come with Struts. Input validation,
for instance, is handled by the Validation interceptor. Unplug this interceptor and validation
will stop working. File upload is so smooth thanks to another interceptor, the File Upload
interceptor. Some of the interceptors may prevent the action from being executed if certain
conditions are not met. For example, the Validation interceptor keeps an action from firing if
an error occurs during the validation of that action.

For most applications, the default interceptors are sufficient. However, there are times when
you need to create your own interceptor. This chapter explains how.

The Interceptor Interface

Technically, an interceptor is a Java class that implements the
com.opensymphony.xwork?2.interceptor.Interceptor interface. The interface is shown

in Listing 18.1.

Listing 18.1. The Interceptor interface

package com opensynphony. xwor k2. i nt er cept or;
i mport com opensynphony. xwor k2. Acti onl nvocati on;
import java.io.Serializable;

public interface Interceptor extends Serializable {
voi d destroy();
void init();
String intercept(Actionlnvocation invocation) throws Exception;

This interface has three lifecycle methods:

e init. This method is called once right after the interceptor is created. An interceptor
author overrides this method to perform resource initialization.

e intercept. This method is called every time the request for an action is invoked,
giving the interceptor a chance to do something before and after the action is
executed.

e destroy. The method is called before the interceptor is destroyed. Code to release
resources should be written here.

Struts calls the intercept method of each interceptor registered for an action. Each time
this method is called, Struts passes an instance of the
com.opensymphony.xwork2.Actionlnvocation interface. An Actionlnvocation
represents the execution state of an action, from which an interceptor can obtain the
Action object as well as the Result object associated with the action. To let the execution
chain proceed to the next level, the interceptor calls the invoke method on
Actionlnvocation.

You can also attach PreResultListener listeners to an Actionlnvocation, by calling the
addPreResultListener method on the Actionlnvocation. The

com.opensymphony.xwork?2.interceptor.PreResultListener interface allows you to do
something after the action is executed but before the execution of the result. This interface
has one callback method, beforeResult:

voi d beforeResul t (com opensynphony. xwor k2. Acti onl nvocati on
i nvocation, java.lang.String resultCode)

The Abstractlnterceptor class implements Interceptor and provides empty
implementations of the init and destroy methods. Since not all interceptors need to
initialize resources or do anything when they are destroyed, extending
Abstractlnterceptor saves your from implementing init and destroy.

The AbstractlInterceptor class is shown in Listing 18.2.

Listing 18.2. The Abstractinterceptor class

package com opensynphony. xwor k2. i nt er cept or;

i mport com opensynphony. xwor k2. Acti onl nvocati on;

public abstract class Abstractlnterceptor inplenents Interceptor {
public void init() {

}
public void destroy() {
}

public abstract String intercept(Actionlnvocation invocation)
t hrows Excepti on;

Writing A Custom Interceptor

As an example, application appl8a contains a custom interceptor named
DataSourcelnjectorinterceptor. This interceptor injects a DataSource to an action
object. The action can in turn inject the DataSource to a Data Access Object class (See the

discussion of the DAO pattern in Chapter 11, "The Persistence Layer"). The

DataSourcelnjectorinterceptor class is presented in Listing 18.3. In this example,
the DataSource is obtained once from a JNDI lookup and is stored in a static variable.

Listing 18.3. The DataSourcelnjectorinterceptor class

package interceptor;

i mport javax. nam ng. Cont ext;

i mport javax.nam ng.Initial Context;
i mport javax. nam ng. Nam ngExcepti on;
i mport javax.sql . Dat aSour ce;

i mport com opensynphony. xwor k2. Acti onl nvocati on;
i mport com opensynphony. xwor k2. i nterceptor. Abstract| nterceptor;

public class DataSourcel njectorlnterceptor extends
Abstract !l nterceptor {
private static DataSource dataSource;
private String dataSourceNane;
public void setDat aSourceNane(String dat aSour ceNane) {
t hi s. dat aSour ceNane = dat aSour ceNane;
}

public void init() {
/1 init() is called AFTER properties are set
if (dataSource == null) {
Systemout.println("Interceptor. init DS");
try {
Context context = new Initial Context();
dat aSour ce = (Dat aSource)
cont ext . | ookup(dat aSour ceNarne) ;
} catch (Nanmi ngException e) {
}

}

public String intercept(Actionlnvocation invocation)
throws Exception {
hj ect action = invocation.getAction();
if (action instanceof DataSourceAware) {
((Dat aSour ceAwar e) acti on). set Dat aSour ce(dat aSour ce) ;
}

return invocation.invoke();

Every time an action backed by this interceptor is invoked, the interceptor injects the
DataSource object. Not all actions will get this object, only those whose classes implement

the DataSourceAware interface will. This interface is given in Listing 18.4.

Listing 18.4. The DataSourceAware interface

package interceptor;
i mport javax. sqgl . Dat aSour ce;

public interface DataSourceAware {
voi d set Dat aSour ce(Dat aSour ce dat aSour ce) ;
}

Using DataSourcelnjectorinterceptor

Now that you have a custom interceptor, it is a good idea to put it to use. The appl8a
application employs a Product_list action that uses this interceptor. Note that since this is
a custom interceptor, you must register it with the struts.xml file before you can use it. The

action and interceptor declarations for app18a are shown in Listing 18.5.

Listing 18.5. The action declarations

<package nanme="appl8a" extends="struts-default">
<i nterceptors>
<i nterceptor nane="dataSourcel njector"
cl ass="interceptor. Dat aSourcel nj ectorlnterceptor">
<par am nane="dat aSour ceNane" >
j ava:/ conp/ env/j dbc/ nyDat aSour ce
</ par anp
</interceptor>
</interceptors>

<action nanme="Product |ist" class="appl8a.ListProductAction">
<i nterceptor-ref nanme="dataSourcelnjector"/>
<interceptor-ref name="default Stack"/>
<resul t>/jsp/ Products.jsp</result>
</ action>
</ package>

The Product_list action lists products from a database. The database can be accessed by
using the DataSource injected by the custom interceptor. The ListProductAction class in

Listing 18.6 handles the action.

Listing 18.6. The ListProductAction class

package appl8a;
i mport interceptor. DataSour ceAwar e;
i mport java.util.List;
i mport javax. sqgl . Dat aSource;
i mport com opensynphony. xwor k2. Acti onSupport;
public class ListProductAction extends ActionSupport inplenents
Dat aSour ceAwar e {
private DataSource dataSource;
private List<Product> products;

public void setDataSource(DataSource dataSource) {
t hi s. dat aSour ce = dat aSour ce;

public List<Product> getProducts() {
return products;
}

public void setProducts(List<Product> products) {
this.products = products;
}

public String execute() {
Pr oduct DAO pr oduct DAO = new Product DAQ() ;
pr oduct DAO. set Dat aSour ce(dat aSour ce) ;
products = product DAQ get Al | Products();
return SUCCESS;

There are two things to note. A product is represented by the Product class in Listing

18.7. A Product is a transfer object that encapsulates four properties, productld, name,
description, and price. The ListProductAction class implements DataSourceAware so
an instance of ListProductAction can be injected a DataSource.

Listing 18.7. The Product class

package appl8a;
public class Product {
private int productld;
private String nane;
private String description;
private double price;
/1l getters and setters not shown

The ListProductAction class uses the ProductDAO class (shown in Listing 18.8) to
retrieve data from the Products table in the database. You must of course first create this
table and populates it with data. The action injects the ProductDAO the DataSource by
calling the ProductDAO's setDataSource method.

Listing 18.8. The ProductDAO class

package appl8a;

i mport java.sql.Connecti on;

i mport java.sql.PreparedStatenent;
i mport java.sql.ResultSet;

i mport java.sql.SQLExcepti on;

i mport java.util.ArraylList;

i mport java.util.List;

i nport javax. sgl . Dat aSource;

public class Product DAO {
private DataSource dataSource;
public void setDataSour ce(Dat aSource dataSource) {
thi s. dat aSour ce = dat aSource;
}

private static final String sql =
"SELECT productld, nane, description, price FROM Products";

public List<Product> getAllProducts() {
Li st <Product > products = new ArraylLi st <Product>();
Connection connection = null;
Prepar edSt at enent pStatenent = nul |l ;
Resul t Set resultSet = null;
try {
connection = dataSour ce. get Connecti on();
pSt at enent = connecti on. prepareStatenent (sql);
resultSet = pStatenent.executeQuery();
while (resultSet.next()) {
Product product = new Product();
product . set Product 1 d(resul t Set. getlnt ("productld"));
product . set Nane(resul t Set. get Stri ng("name"));
product . set Descri ption(
resultSet.getString("description"));
product . setPrice(resultSet.getDouble("price"));
product s. add(pr oduct) ;

}
} catch (SQLException e) {
e.printStackTrace();

} finally {
if (resultSet !'= null) {
try {

resultSet.close();
} catch (SQLException e) {
}

}
if (pStatement !'= null) {
try {
pSt at enent . cl ose();
} catch (SQ.Exception e) {
}

}

if (connection !'= null) {
try {
connection. cl ose();
} catch (SQ.Exception e) {

}
}

return products;

Direct your browser to this URL to invoke the custom interceptor.

http://1 ocal host: 8080/ appl8a/ Product |ist.action

You will see the results shown in your browser, like those in Figure 18.1. what you see
depends on the content of the Products table in your database.

Figure 18.1. Using DataSourcelnjectorinterceptor

2 Products - Microsoft Internet Explorer El@"zl
© Rle Edt giew Favorites Took Help .f."'
: Address -ﬂ bitp:f locabost: B0B0 apo 1 BaProduct_ist_ackion | e d Go
Id Mame Description Price
1 TTA&T Cordless Phone Excellent reception (300 feet) $50.99
2 Erson Color Laser 20pps super printing speed $223.99
2 HB Password Generator One time password generator $£9.99
I&_‘I Dione "j Local intranst
Summary

You can write custom interceptors by implementing the Interceptor interface or extending
the Abstractlnterceptor class. In this chapter you learned how to write a custom
interceptor and how to register it in an application.

Chapter 19. Custom Result Types

Struts ships with standard result types such as Dispatcher and Stream. This chapter
explains how you can write a custom result type. An example, a CAPTCHA image producing
result type, is also discussed.

Overview

A result type must implement the com.opensymphony.xwork2.Result interface. This
interface has one method, execute, whose signature is as follows.

voi d execute(Actionlnvocation invocation)

This method gets called when the result is executed. A result type author can write the code
that will be run when an instance of the result type executes.

Note
Actionlnvocation was explained in Chapter 18, "Custom Interceptors."

The org.apache.struts2.dispatcher.StrutsResultSupport class is a base class that implements
the Result interface. Many result types extend this class instead of implementing Result
directly.

Writing A Custom Plugin

This section shows you how to write your own result type. An instance of the custom result
type developed in this chapter sends a CAPTCHA image. If you are not familiar with
CAPTCHA, read the explanation below.

CAPTCHA is a slightly contrived acronym for "Completely Automated Public Turing test to
tell Computers and Humans Apart." CAPTCHA images are often used in web forms. For

example, a login form, such as the one in Figure 19.1, can use a CAPTCHA image in
addition to the usual user name and password fields to make it more secure. A user who
wishes to log in is asked to type in his/her user name and password plus the word displayed
by the CAPTCHA image. Login is successful if the user entered the correct username and
password as well as typed in the correct image word. A login form equipped with a
CAPTCHA image is more secure because brute force, attempts to log in by using
automatically generated pairs of user names and passwords until one successfully logs the
offending computer in, will be less likely to be successful.

Figure 19.1. The CAPTCHA-facilitated login page

2 Login with CAPTCHA - Microsoft Internet Explorer E|E|Fg|
File Edit Wiew Favorites Tools Help ﬂr

. Address @:[hkkp:flocalbost: 3080) app 1 9a)Login_input, ackion || a G0

Enter your user name, password,
and the image word

User Name: |
Password: |

2] Dare %J Local inkranet

Another common use of CAPTCHA is to prevent spammers from sending messages to form
owners. CAPTCHA forms may be used to frustrate automatic programs that submit forms
because submission will only be successful if the correct word is also supplied.

The idea behind using CAPTCHA in forms is that computers are good with characters and
numbers but not so with images. Therefore, if you ask the computer what the word in the

image in Figure 19.1 reads, chances are the computer will not have a clue. Unless of
course you use a program designed to recognize images, which are already in existence but
are not so commonplace. In other words, CAPTCHA makes your login form more secure but
there's no 100% guarantee that it will protect you from the most determined people.

In a web form, CAPTCHA works by producing a pair of words. The first word is converted
into an image and the second word is produced using an algorithm in such a way that
different instances of the same word always produce the same second word. However,
knowing the second word is not good enough to find out what the first word is. Many
implementations of CAPTCHA use a hash algorithm to produce the second word.

There are several ways of producing CAPTCHA-facilitated forms. One way would be to
generate hundreds or thousands of word pairs and store them in a database. When you
send the form to the browser, you also send the image version of the first word and the
second word in a hidden field. When the form is submitted, the server matches the hidden

field value and the word typed in by the user. If the two match, the user passed the
CAPTCHA test.

Another way, one that does not require a database, is by using cookies. A Struts action
specializes in generating a word and its hash and converts the word to an image. At the
same time, the second word or the hash is sent to the browser as a cookie. When the form
is submitted, the server will match the value entered by the user and the cookie. The server
will do this by using the same algorithm that produces the word pair in the first place.

It sounds complicated, but I have written a Java library, free for download from

brainysoftware.com and free to use commercially or non-commercially, that can
generate random words and produce CAPTCHA images. The library is included in the ZIP
that accompanies this book.

There's only one class in the library, the com.brainysoftware.captcha.CaptchaUtil class,
with the following methods, all static:

public static String get RandomAord(int | ength)

Returns a random word of a specified length.

public static String getHash(java.lang. String word)

Returns an irreversible hash of the specified word.

public static java.awt.imge. Buf f eredl nage get Capt chal mage(
java.lang. String word, int width, int height, int type)

Returns an image representation of the specified word. The width and height arguments
specify the image size in pixel. The last argument is currently reserved for future use.

public static bool ean validate(java.lang. String word,
java.lang. String hash)

Returns true if the specified hash is the hash of the specified word. Otherwise, returns false.

Now, let's see how we can create a result type that returns a CAPTCHA image with the help
of this library.

The CaptchaResult class in Listing 19.1 is the brain of the new result type. It extends
the StrutsResultSupport class and overrides its doExecute method.

Listing 19.1. The CaptchaResult class

package com brai nysoftware. capt cha;

i mport java.awt.i mage. Buf f er edl mage;

i mport javax.imageio. | nmagel G

i mport javax.servlet.http. Cooki e;

i mport javax.servlet.http. HtpServl et Response;

i mport org.apache. struts2.di spatcher. StrutsResul t Support;
i mport com opensynphony. xwor k2. Acti onl nvocati on;

public class CaptchaResult extends StrutsResultSupport ({
private String hashCooki eNane = "hash";
private int wordLength = 6;
private int inmageWdth = 200;
private int inmageHei ght = 70;

/1 getters and setters not shown

protected voi d doExecute(String final Location,
Acti onl nvocation invocation) throws Exception {
Ht t pSer vl et Response response = (HttpServl et Response)
i nvocati on. getl nvocati onCont ext (). get (HTTP_RESPONSE) ;
response. set Cont ent Type("i mage/j pg");
String word = Captchaltil.get RandonWor d(wordLengt h);
String hash = Captchaltil.get Hash(word);
Cooki e hashCooki e = new Cooki e(hashCooki eNanme, hash);
response. addCooki e(hashCooki e) ;
Buf f er edl nage i mage = CaptchalUtil . get Capt chal mage(word,
i mageW dt h, inageHei ght, 0);
I magel O wite(inmge, "jpg", response.getQutputStream’));

The doExecute method generates a random word and a corresponding hash and creates a
Cookie that contains the hash. It then appends the cookie to the HttpServiletResponse
object, generates a Bufferedlmage of the random word, and sends the image to the
browser.

Using the New Result Type

The appl9a application presents a CAPTCHA login form that uses the result type in Listing
191. The action declarations are given in Listing 19.2.

Listing 19.2. Action declarations

<?xm version="1.0" encodi ng="UTF-8" ?>

<I DOCTYPE struts PUBLIC
"-// Apache Software Foundation//DID Struts Configuration 2.0//EN
"http://struts. apache. org/dtds/struts-2.0.dtd">

<struts>
<package nane="appl9a" extends="struts-defaul t">
<resul t-types>
<resul t-type nane="captcha"
cl ass="com brai nysof t war e. capt cha. Capt chaResul t "
/>
</result-types>
<action nanme="Logi n_i nput">
<resul t>/]jsp/Login.jsp</result>
</ action>
<action name="Logi n" class="appl9a. Login">
<par am nanme="hashCooki eNane" >hashCooki e</ par an»
<result nanme="success">/]j sp/ Thanks.jsp</result>
<result name="input">/jsp/Login.jsp</result>
</ action>
<action nanme="Cet Capt chal nage" >
<result type="captcha">
<par am nane="hashCooki eNane" >hashCooki e</ par an>
<par am name="wor dLengt h" >6</ par an»
<par am nanme="i mageW dt h" >90</ par an
<par am nanme="i mageHei ght " >25</ par an»
</result>
</ action>
</ package>
</struts>

The captcha result type is declared under <result-types> and there are three action
elements. The Login_input action shows the login form and the Login action verifies the
user name and password and the CAPTCHA word. The GetCaptchalmage action returns a
CAPTCHA image.

The Login action class is given in Listing 19.3.

Listing 19.3. The Login class

package appl9a;

i mport javax.servlet. http. Cooki e;

i mport javax.servlet.http. HtpServl et Request;

i mport org.apache. struts2.interceptor. Servl et Request Awnar e;
i mport com brai nysof twar e. capt cha. Capt chaUtil ;

i mport com opensynphony. xwor k2. Acti onSupport;

public class Login extends ActionSupport
i npl emrents Servl et Request Awar e {
private String userNaneg;
private String password,
private String word;
private String hashCooki eNane = "hash";
private HttpServl et Request httpServl et Request;

/1l getters and setters not shown

public void set Servl et Request (H t pSer vl et Request
htt pServl et Request) {
this. httpServl et Request = httpServl et Request;

public String execute() {
Cooki e[] cookies = httpServl et Request. get Cooki es();
String hash = null;
for (Cookie cookie : cookies) {
i f (cookie.getNanme() . equal s(hashCooki eNane)) {
hash = cooki e. get Val ue();
br eak;

}

if (hash !'= null
&& user Nane. equal s("don")
&& password. equal s("secret")
&% CaptchaUtil.validate(word, hash)) {
return SUCCESS,
} else {
addActionError("Login failed.");
return | NPUT;

The execute method verifies the user name and password and validates the word and the
hash. The hash is obtained from a cookie and the word is what the user types in the third
text field in the Login form.

The Login.jsp page is given in Listing 19.4 and the Thanks.jsp page in Listing 19.5.

Listing 19.4. The Login.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Login with CAPTCHA</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<di v id="gl obal ">
<h3>Ent er your user nane, password, and the inage word</h3>
<s:actionerror/>
<s:form action="Login">
<s:textfield nane="user Nane" | abel ="User Nane"/>
<s: password nanme="password" | abel ="Password"/>

<tr>
<t d><i ng src="Cet Capt chal nage. acti on"/></td>
<td>
<s:textfield thene="sinple" name="word"
val ue=""/>
</td>
</tr>
<s:subnit val ue="Login"/>
</s:fornmp
</ di v>
</ body>
</htm >

Note that the img element's src attribute in the Login.jsp page points to the
GetCaptchalmage action.

Listing 19.5. The Thanks.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >

<head>

<title>Thank you</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>

<di v id="gl obal ">

You' re | ogged in.

</ di v>

</ body>

</htnm >

Note

You must copy both the brainycaptcha.jar and brainycaptchaplugin.jar files in your
WEB-INF/Iib directory. Both JAR files are included in the zip file that bundles the sample
applications that accompany this book.

To test the application, direct your browser to this URL:

http://1 ocal host: 8080/ appl9a/ Logi n_i nput. action

You'll see a CAPTCHA image similar to the one in Figure 19.1.

Summary

This chapter explained how you could write a custom result type. It also presented an
example of result type that streamed a CAPTCHA image to the browser.

Chapter 20. Velocity

The Apache Velocity Engine is an open source templating engine that supports a simple and
powerful template language to reference Java objects. The Apache Velocity Project is an
Apache project responsible for creating and maintaining the Apache Velocity Engine. The
software is available for free download from http://velocity.apache.org. Struts includes the
latest version of Velocity so there's no need to download Velocity separately.

This chapter provides a brief tutorial on how to use Velocity in Struts.

Overview

Most Struts applications use JSP as the view technology. However, JSP is not the only view
technology Struts supports. Velocity and FreeMarker (discussed in Chapter 21,
"FreeMarker") can also be used to display data.

Velocity is a template language. A template is text that provides a basis for documents and
allows for words to be dynamically inserted into certain parts of it. For example, JSP can
serve as a template because it lets you insert values through the use of the Expression
Language. Since you already know JSP then it should not be hard to learn Velocity as both
are similar.

Unlike JSP, however, Velocity does not permit Java code to be used and only allows
rudimentary access to data. As such, developers are forced to separate presentation from
the business logic. In the past this "feature,” the inability to use Java code, was often cited
by Velocity proponents as a reason to leave JSP and embrace Velocity. However, starting
from Servlet 2.0 you can now configure your servlet applications to disallow Java code in
JSPs and hence promote separation of presentation and logic.

Another point to note is that Velocity templates can be placed within the application or in
the class path. Contrast this with JSPs that can only be found if placed within the
application. Velocity will first search the application, if the template could not be found, it
will search the class path. In addition, Velocity templates can be loaded from a JAR while
JSPs cannot. Therefore, if you are deploying a component as a Struts plug-in, Velocity is a
great choice because you can include the templates in the same JAR as the other part of the
component.

Velocity supports simple control structures such as loops and if-else statements, though.
The dollar sign ($) has a special meaning in Velocity. It is used to indicate what follows is a
variable name that needs to be replaced at run-time.

The struts-default.xml file already defines the velocity result type, you can use Velocity in
Struts without writing additional configurations.

<resul t-type nane="vel ocity"
cl ass="org. apache. strut s2. di spatcher. Vel oci tyResul t"/ >

You just need to make sure that the following JAR files are copied to your WEB-INF/lib
directory: velocity-VERSION.jar, velocity-dep-VERSION.jar, and velocity-tools-VERSION.jar.

In addition, Velocity relies on the Digester project, so the commons-digester-VERSION.jar
file, included with Struts deployment, is also needed.

The default.properties file specifies the following entry that indicates that Velocity
configuration file must be named velocity.properties.

struts.velocity.configfile = velocity. properties

Velocity Implicit Objects
In Struts, Velocity searches for data in this order:

1. The Value Stack
2. The action context
3. Built-in variables

Just like JSP, Velocity allows access to important objects such as the ServletContext and
HttpServietRequest. Table 20.1 lists the implicit objects in Velocity.

Table 20.1. Velocity implicit objects

Name Description
stack The value stack
action The action object

response [The HttpServletResponse object

res The alias for response

request [The HttpServletRequest object

req The alias for request

session The HttpSession object

application The ServletContext object

base The request's context path

Tags

Velocity in Struts extends the tags in the Struts tag library. Velocity tags are similar to the
Struts tags but the syntax for using them is slightly different. To start, you don't need this
taglib directive that you need when using JSP:

<v@taglib prefix="s" uri="/struts-tags" %

In JSP, a start tag is enclosed with < and > and an end tag with </ and >. In Velocity a
start tag starts with #s followed by the tag name. Most tags are inline and do not need an

end tag. For example:

#stextfield

Some tags, including form, require an #end.

#sform ...
#stextfield ...
#ssubm t

#end

Velocity tag attributes are enclosed in brackets. Each attribute name/value are enclosed in
double quotes and separated by an equal sign.

#stagNane ("attribute-1=value-1" "attribute-2=value-2" ...)

For example:

#stextfield ("nane=user Nane" "Il abel =User Nane")

Velocity Example

The app20a application illustrates the use of Velocity in Struts. It features two actions,
Product_input and Product_save, as declared using the action elements in Listing

20.1.

Listing 20.1. Action declarations

<package name="app20a" extends="struts-default">
<action nane="Product i nput">
<result type="vel ocity">/tenpl ate/Product.vnx/result>
</ action>
<action nane="Product_save" class="app20a. Product">
<result nanme="input" type="velocity">
/tenpl at e/ Product. vm

</result>
<result type="velocity">/tenplate/Details.vnx/result>
</ action>

</ package>

The Product_input action forwards to the Product.vm template in Listing 20.2. This
template contains a form for inputting product information.

Listing 20.2. The Product.vm template

<htm >

<head>

<title>Add Product</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>

<div id="global" style="w dth: 330px" >

<h3>Add Product </ h3>
#sform ("acti on=Product _save")

#stextfield ("nane=nane" "l abel =Product Nane")
#istextfield ("nane=description" "l abel =Descri ption")
#istextfield ("nanme=price" "l abel =Price")
#ssubnmit ("val ue=Add Product")

#end

</ div>

</ body>

The Product_save action invokes the Product action class in Listing 20.3 and forwards
to the Details.vml template in Listing 20.4.

Listing 20.3. The Product class

package app20a;
i mport com opensynphony. xwor k2. Acti onSupport;
public class Product extends ActionSupport {
private String productld;
private String name;
private String description;
private double price

/1l getters and setters not shown

public String save() {
return SUCCESS
}

Listing 20.4. The Details.vm template

<htm >
<head>
<title>Details</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dth: 300px" >
<h3>Pr oduct Detail s</ h3>
<t abl e>
<tr>
<td>Nane: </t d>
<t d>#sproperty ("val ue=nanme")</td>
</tr>
<tr>
<td>Descri ption: </td>
<t d>${description}</td>
</tr>
<tr>
<td>Price: </td>
<td>${price}</td>
</[tr>
</tabl e>
</ di v>
</ body>

To test this application, direct your browser to this URL.

http://1 ocal host: 8080/ app20a/ Product _i nput. acti on

You will see a form like that in Figure 20.1.

Figure 20.1. The form in the Product.vm template

2 Add Product - Microsoft Internet Explorer :

=1[E
.ﬂr

: Address |@ httpe fflocalbost: 2080 app20a/Product _input, ackion V| Go

File Edit Wiew Favarites Tools Help

Add Product

Product Name: | |

Description: | |
Price: | |
| Add Product |

@ Done % Local intranet

If you click the Add Product button, you will see the content of the Details.vm template.

Figure 20.1. The content of the Details.vm template

A Details - Microsoft Internet Explorer, :”E”Z|
.-{‘r

. Address |$E| htkp: fflocalhost: 3080 app20aProduck_save. action V| =0

File Edit Wiew Favarites Tools Help

Product Details

MName: T3 Cordless Phone
Description: Excellent reception
Price: 24,99

I@ Ciome ‘ﬂ Local intranet

Summary

JSP is not the only view technology that can be used in Struts. Velocity and FreeMarker can
too, and so can XSLT. This chapter explained how you can use Velocity as a view
technology.

Chapter 21. FreeMarker

FreeMarker is a template engine written in Java that can be used with Struts. In fact, the
Struts tag library uses FreeMarker as the default template language. FreeMarker supports
more features than Velocity. For detailed comparison between FreeMarker and Velocity,
read this:

http://freemarker. org/fnvsVel . htm

This chapter provides a brief tutorial on how to use FreeMarker in Struts.

Overview

To use FreeMarker in Struts, you don't need to install additional software. The JAR file that
contains the FreeMarker engine, the freemarker-VERSION.jar file, is already included in
Struts deployment. In fact, without this file your Struts application won't work because
FreeMarker is the default template for the Struts tag library.

FreeMarker templates can be placed within the application directory or the class path. The
application directory will be searched first. The fact that the FreeMarker engine also
searches the class path makes this technology perfect for Struts because it enables

FreeMarker templates to be packaged in JAR files. As you'll learn in Chapter 23, "Plug-
ins”, plug-ins are distributed as JAR files. You cannot package JSPs in a JAR and hope the
web container will translate and compile them.

In Struts the FreeMarker engine searches for data in this order:

Built-in variables
The Value Stack
The action context
Request scope
Session scope
Application scope

OOhONE

Just like JSP, FreeMarker allows access to important objects such as the ServiletContext
and HttpServietRequest. Table 21.1 lists the implicit objects in FreeMarker.

Table 21.1. FreeMarker implicit objects

Name Description

Stack The Value Stack

action The action object

Table 21.1. FreeMarker implicit objects

Name Description

response |The HttpServletResponse object

res The alias for response

request |The HttpServletRequest object

req The alias for request

session The HttpSession object

application|The ServletContext object

base The request's context path

FreeMarker Tags

Struts provides FreeMarker tags that are extensions to the tags in the Struts tag library.
The syntax is very similar to that in JSP. You use <@s.tag as the start tag and </@s.tag>
as the end tag, where tag is the tag name. For example, here is the form tag:

<@.formaction="...">

</ @.fornp

Now, compare these JSP tags

<s:form action="Product save">
<s:textfield nane="nane" | abel ="Product Nane"/>
<s:textfield name="description" |abel ="Description"/>
<s:textfield nane="price" |abel="Price"/>
<s:subnit val ue="Add Product"/>

</s:fornp

with their equivalents in FreeMarker:

<@.form action="Product_save">
<@.textfield nane="nane" | abel =" Product Name"/>
<@.textfield name="description" | abel ="Description"/>
<@.textfield name="price" |abel="Price"/>
<@.submt val ue="Add Product"/>

</ @.fornme

FreeMarker supports dynamic attributes, a feature missing in JSP. In JSP, you can use the
param tag to pass values to the containing tag. For instance:

<s:url val ue="nyResource">
<s: param nane="user |l d" val ue="%userld}"/>
</s:url>

In FreeMarker you don't need to pass the parameter using the param tag. Instead, you can
treat the parameter as a dynamic attribute. The FreeMarker equivalent of the url tag above
will be:

<@&.url val ue="nyResource" userld="${userld}"/>

Example

As an example, consider the app2l1a application that has two actions, Product_input and
Product_save. The application uses FreeMarker templates instead of JSPs.

The actions are declared in the struts.xml as shown in Listing 21.1.

Listing 21.1. Action declarations

<package nanme="app2la" extends="struts-default">
<action nane="Product _input">
<result type="freemarker">/tenpl ate/Product.ftl</result>
</ action>
<action nane="Product_save" class="app2la. Product">
<result nanme="input" type="freenarker">
/tenpl at e/ Product . ftl

</result>
<result type="freemarker">/tenplate/Details.ftl</result>
</ action>

</ package>

The Product_save action uses the Product action class given in Listing 21.2. This is
exactly the same action class you would have for a dispatcher result.

Listing 21.2. The Product class

package app2la;
i mport com opensynphony. xwor k2. Acti onSupport ;
public class Product extends ActionSupport {
private String productld;
private String name;
private String description;
private double price

/1l getters and setters not shown

public String save() {
return SUCCESS;
}

Listings 21.3 and 21.4 shows two templates that sport FreeMarker tags.

Listing 21.3. The Product.ftl template

<htm >

<head>

<title>Add Product</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>

<div id="global" style="w dth: 330px" >

<h3>Add Product </ h3>

<@.form action="Product_save">
<@.textfield nane="nane" | abel ="Product Nane"/>
<@.textfield nane="description" | abel ="Description"/>
<@.textfield name="price" |abel="Price"/>
<@.submt val ue="Add Product"/>

</@&.fornmp

</ div>

</ body>

Listing 21.4. The Details.ftl template

<htm >

<head>

<title>Details</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>

<di v id="gl obal" style="w dth: 300px">

<h3>Pr oduct Detail s</ h3>
<t abl e>
<tr>
<t d>Nane: </td>
<td><@. property val ue="nane"/ ></td>

</tr>

<tr>
<td>Description: </td>
<t d>${description}</td>

</tr>

<tr>
<td>Price:</td>
<td>${price}</td>

</tr>

</tabl e>

</ di v>
</ body>

Note that to access an action property, you can use the property tag or the notation ${ ...

¥
To test the application, direct your browser to this URL.

http://1 ocal host: 8080/ app2la/ Product i nput. acti on

You'll see the Product form like the one in Figure 21.1.

Figure 21.1. The Product form

2 Add Product - Microsoft Internet Explorer : E”Z'
.-z‘x

: Address |@ httpe fflocalbost: 2080/ app2 1 a/Product_input, ackion V| Go

File Edit Wiew Favarites Tools Help

Add Product

Product Name: | |

Description: | |

Price: | |
| Add Product |

I@ Ciome ‘ﬂ Local intranet

Submitting the form invokes the Product_save action that forwards to the Details.ftl
template. The result is shown in Figure 21.2.

Figure 21.2. The Details page

2l Details - Microsoft Internet Explorer |Z||E|[Z|
File Edit Wiew Favarites Tools Help "f

. Address l@ hkkp: f flocalhost: 3080 app2 1 afProduck_save. ackion V| 0]

Product Details

Name: #Box 60
.. Family gaming
Crescription: package
Price: 299
I@ Dane &.J Local intranet

Summary

FreeMarker is the template language used to render tags in the Struts tag library. It is also
a good alternative to JSP and allows templates to reside in the class path, in addition to a
directory under the application directory. Because of this feature, FreeMarker templates can
be deployed in a JAR file, which makes FreeMarker suitable for plug-ins.

Chapter 22. XSLT Results

Extensible Stylesheet Language (XSL) is a World Wide Web Consortium specification that
deals with XML formatting. XSL defines how an XML document should be displayed. XSL to
XML is what CSS to HTML. There are two technologies defined in the XSL specification: XSL
Formatting Objects and XSL Transformations (XSLT). The latter is the main focus of this
chapter as the Struts XSLT result type is intended to support this technology.

The XSLT specification can be downloaded from

http://ww. w3. org/ TR/ xsl t

Overview

XML documents are used for easy data exchange. Unlike proprietary databases where data
is stored in proprietary formats that make exchanging data difficult, XML documents are
plain text and can be understood by just reading the documents. For example, this XML
document is self-explanatory, it contains information about an employee.

<enpl oyee>
<enpl oyeel d>34</ enpl oyeel d>
<firstNane>Jen</first Nanme>
<l ast Name>CGoodhope</ | ast Nane>
<bi rt hDat e>2/ 25/ 1980</ bi rt hDat e>
<hi r edDat e>3/ 22/ 2006</ hi r edDat e>
</ enpl oyee>

If you send this XML document, the receiving party can easily understand it and probably
manipulate it with their own tools. However, it's probably not as straightforward as you may
think. The other party may have XML documents containing details on employees, but the
format is slightly different. Instead of employeeld they might use id and instead of
employee they might call it worker.

<wor ker >
<i d>50</ enpl oyeel d>
<firstNanme>Max</firstNane>
<| ast Name>Ccean</ | ast Nane>
<bi rt hDat e>12/ 13/ 1977</ bi r t hDat e>
<hi r edDat €>10/ 5/ 2005</ hi r edDat e>
</ wor ker >

If the data from the first XML document is to be merged into the second XML document, for
example, there must be some kind of transformation that converts <employee=> to
<worker>= and <employeeld> to <id>. This is where XSLT plays a role.

Figure 22.1 shows how XSLT works. At the core is an XSLT processor that reads the
source XML and uses a stylesheet to transform an XML document into something else.

Figure 22.1. How XSLT works

XML [XML,]
XHTML,
XSLT Processor Text.
Stylesheet etc
=

An XSL stylesheet is an XML file with an xsl or xslt extension. The root element of an XSL
stylesheet is either <xsl:stylesheet> or <xsl:transform=>=. Here is the skeleton of an XSL
stylesheet:

<?xm version="1.0" encodi ng="UTF-8"?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

</ xsl : styl esheet >

The xsl:stylesheet element has two attributes in this case. The first attribute declares the
version, which currently is 1.0. The second attribute declares the XML namespace. It points
to the official W3C XSLT namespace. The prefix xsl is preferred for an XSL stylesheet but
could be anything you like.

The list of elements can be found in the specification. Here are some of the more important
ones:

o xsl:template. Defines a template. Its match attribute associates the template with
an element in the source XML. For example, this xsl:template element matches the
root of the source XML:

<xsl :tenplate match="/">

e xsl:value-of. Reads the value of an XML element and appends it to the output
stream of the transformation. You select an XML element by using the select
attribute. For instance, the following prints the value of the name element under
<result>.

<xsl :val ue-of select="/result/name"/>

o xsl:for-each. Iterates over a node set. Again, use the select attribute to specify an
XML element. For example, this xsl:for-each element iterates over the
result/supplier elements and prints the details of each supplier and formats them
in an HTML table.

<t abl e>
<xsl :for-each select="/result/supplier">
<tr>
<t d><xsl : val ue- of sel ect ="supplierNane"/></td>

<t d><xsl : val ue-of sel ect ="address"/></td>
</[tr>
</ xsl : for-each>
</ tabl e>

The XSLT Result Type

XML to XML conversion is not the only transformation XSLT can do. XML to XHTML conversion is often done with XSLT too.
Actualy, XSLT can transform XML to any plain text.

The Struts XSLT result type inspects the Value Stack and produces araw XML with aresult root element. Nested within this element are
all the action properties and other information, such asthe locale. The XSLT result will then use the supplied XSLT stylesheet to convert
theraw XML to another XML or XHTML.

The XSLT result can take these parameters:

e stylesheetL ocation. The location of the stylesheet file.

e excudingPattem. Specifies excluded elements. Note that there's a typo (thereisno 1 in excluding) that has not been fixed until
Struts version 2.0.9.

matchingPattern. Specifies the matching pattern. By default it matches everything.

parse. Indicates whether or not the stylesheetl ocation parameter should be parsed for OGNL expressions. The default value is
false.

Note thereis also a deprecated |ocation parameter that does the same thing as stylesheetl ocation.
Note

By default XSLT stylesheets are cached. In development mode it's easier if they are not. Y ou can change this behavior by setting
struts.xslt.nocache to true in the struts.properties file.

Consider the Product action classin Listing 22.1. The supplier property of Product is of type Supplier, shownin Listing 22.2.

Listing 22.1. The Product action class

package app22a;
i mport com opensynphony. xwor k2. Acti onSupport ;
public class Product extends ActionSupport {
private String productld;
private String name;
private String description;
private double price
private Supplier supplier;

/1l getters and setters not shown

public String execute() {
productld = " 345"
name = "Epson";
description = "Super printer";
price = 12. 34;
supplier = new Supplier();
suppl i er.setSupplierld("20a");
supplier.set Nane(" Online Business Ltd.");
supplier.set Address("Cakville, Ontario");
return SUCCESS

Note that the execute method populates the properties. However, in areal world application, the data could come from anywhere.

Listing 22.2. The Supplier class

package app22a;

public class Supplier {
private String supplierld;
private String naneg;
private String address;

/1l getters and setters not shown

The XSLT result would produce the following raw XML out of a Product action.

<resul t>
<acti onErrors></actionErrors>
<acti onMessages></ acti onMessages>
<descri pti on>
<#t ext >Super printer</#text>
</ descri ption>
<error Messages></error Messages>
<errors></errors>
<fiel dErrors></fiel dErrors>
<l ocal e>
<l S@BCount ry>
<#t ext >USA</ #t ext >
</ 1 SG3Count ry>
<l SG3Language>
<#t ext >eng</ #t ext >
</ | SGBLanguage>
<country>
<#t ext >US</ #t ext >
</country>
<di spl ayCount ry>
<#text>Uni ted States</#text>
</ di spl ayCount ry>
<di spl ayLanguage>
<#t ext >Engl i sh</ #t ext >
</ di spl ayLanguage>
<di spl ayNane>
<#t ext >Engl i sh (United States)</#text>
</ di spl ayNane>
<di spl ayVari ant >
<#t ext ></ #t ext >
</ di spl ayVari ant >
<l anguage>
<#t ext >en</ #t ext >
</ | anguage>
<vari ant >
<#t ext ></ #t ext >
</vari ant >
</l ocal e>
<name>
<#t ext >Epson</ #t ext >
</ nanme>
<price>
<#t ext >12. 34</ #t ext >
</ price>
<pr oduct | d>
<#t ext >345</ #t ext >
</ product | d>
<suppl i er>
<addr ess>
<#text>Cakville, Ontario</#text>
</ addr ess>
<name>
<#t ext >Onl i ne Busi ness Ltd. </#text>
</ name>
<supplierld>
<#t ext >20a</ #t ext >
</supplierld>

</ supplier>
<t exts>
<#t ext >nul | </ #t ext >
</texts>
</result>

The action properties are printed in bold.

Example
As an example, the app22a application features an action that uses an XSLT result. The
action, XSLT, converts the Product action to XHTML. The Product class is the same class

shown in Listing 22.1. The action declaration is shown in Listing 22.3.

Listing 22.3. The action declaration

<package name="app22a" extends="struts-defaul t">
<action nanme="XSL" cl ass="app22a. Product">
<result nane="success" type="xslt">
<par am nanme="styl esheet Locati on" >
/ xsl / Product . xsl
</ par anp
</result>
</ action>
</ package>

The XSL action uses an XSLT result that employs the Product.xsl template in Listing
22.4.

Listing 22.4. The Product.xsl template

<?xm version="1.0" encodi ng="UTF-8"?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :tenplate match="/">
<pr oduct >
<pr oduct Nane>
<xsl :val ue-of select="/result/nane"/>
</ pr oduct Nanme>
<pr oduct Descri pti on>
<xsl :val ue-of select="/result/description"/>
</ product Descri pti on>
<price>
<xsl :val ue-of select="/result/price"/>
</ price>
<suppl i er Nanme>
<xsl :val ue-of sel ect="/result/supplier/nanme"/>
</ suppl i er Nane>
</ pr oduct >
</ xsl :tenpl at e>
</ xsl : styl esheet >

You can test the application by directing your browser to this URL:

http://1 ocal host: 8080/ app22al/ XSL. acti on

The result is this:

<?xm version="1.0" encodi ng="UTF-8"?>
<pr oduct >
<pr oduct Nane>Epson</ pr oduct Nane>
<pr oduct Descri pti on>Super printer</productDescription>
<price>12.34</price>
<suppl i er Nane>Onl i ne Busi ness Ltd. </suppl i er Name>
</ pr oduct >

Note

A modified org.apache.struts2.views.xslt.XSLTResult class is included in the app22a
example. For debugging purpose, | added a method that prints the raw XML to the console
or the Catalina.out file. The XSLTResult class is the underlying class of the XSLT result

type.

Summary

The XSLT result type transforms action objects to XML. This result type is not as common as
Dispatcher but may be used in applications that require XML outputs, such as web services.

In this chapter you learned how it works and how to use it in your Struts applications.

Chapter 23. Plug-ins

The Struts plug-in provides an elegant mechanism to promote code reuse. A plug-in is
essentially a JAR. It may contain Java classes, FreeMarker or Velocity templates, and a
struts-plugin.xml file. The latter, if present, can be used to configure applications that use
the plug-in.

In this chapter you will learn how to write plug-ins.

Overview

Struts has been designed to be extensible through plug-ins. Using a plug-in is as easy as
copying the plug-in JAR file to the WEB-INF/Ilib directory. Unlike an ordinary JAR file, a
plug-in may contain a struts-plugin.xml file that complies with the same rules as a
struts.xml file. It is possible to include configuration settings in a plug-in because Struts
loads configuration files in this order:

1. The struts-default.xml in the struts2-core- VERSION.jar file.
2. All struts-plugin.xml files in plug-ins deployed in the application.
3. The struts.xml file.

This means, you can override values defined in the struts-default.xml file in your struts-
plugin.xml, even though the application will have the final say since anything defined in
the struts.xml file overrides similar settings in other configuration files.

You can distribute any type of Struts component in your plug-in, including new packages,
new result types, custom interceptors, actions, new tag libraries, and others.

The Plug-in Registry

Struts comes bundled with several plug-ins, including the Tiles plug-in, the JFreeChart plug-
in, and the SiteMesh plug-in. However, the Struts community is buzzing with third-party
plug-ins, most of which are free. This site maintains a registry of Struts 2 plug-ins:

http://cw ki . apache. or g/ S2PLUG NS/ hone. ht m

At my last visit there were close to forty plug-ins available. | suspect there are others that
are not listed here.

Writing A Custom Plugin

Plug-ins are easy to write. If you know how to create a JAR file, you can create a plug-in.
The app23a application contains the new result type CaptchaResult class discussed in

Chapter 19, "Custom Result Types." Please read Chapter 19 now if you haven't done
so.

The CAPTCHA result type is based on the CaptchaResult class that extends
StrutsResultSupport. In order for the result type to be easily used in applications, you
need to package it as a plug-in. Since it is a result type, you need to register it in a struts-

plugin.xml. Listing 23.1 shows the XML file.

Listing 23.1. The struts-plugin.xml file

<?xm version="1.0" encodi ng="UTF-8" ?>

<I DOCTYPE struts PUBLIC
"-// Apache Software Foundation//DTD Struts Configuration 2.0//EN'
"http://struts. apache. org/dtds/struts-2.0.dtd">

<struts>
<package nane="captcha-default" extends="struts-defaul t">
<resul t-types>
<resul t-type nane="captcha"
cl ass="com brai nysof t war e. capt cha. Capt chaResul t "
/>
</result-types>
</ package>
</struts>

The directory structure of our plug-in application is shown in Figure 23.1. There are one
class and one XML file.

Figure 23.1. The directory structure of the captcha plugin

== com
== brainysoftware

—|-[== captcha
[J] CaptchaResult.java
struts-plugin. xml

=

Now, create a JAR. The standard way, albeit not the easiest, is to use the jar program that
comes with your JDK by following these steps. This assumes that your JDK has been added
to the path directory so that you can invoke the jar program from anywhere in your
computer.

1. Change directory to the directory where the struts-plugin.xml resides. This
directory will also contain the com directory.
2. Type this command and press Enter.

jar -cvf captchaplugin.jar *

AJAR named captchaplugin.jar will be created. This JAR is your plug-in.

Using the Captcha Plug-in

The app23b application illustrates how to use the Captcha plug-in discussed earlier. All you
need to do is make sure the JAR file is copied to the WEB-INF/Ilib directory of the
application. In addition, since the plug-in uses classes in Brainy Software's CAPTCHA
component, you must copy the brainycaptcha.jar file too. This file is distributed with the
ZIP file that bundles the sample applications for this book.

There are three actions defined in app23b, Login_input, Login, and GetCaptchalmage.
These action declarations are shown in Listing 23.2.

Listing 23.2. Action declarations

<package name="app23b" extends="captcha-default">
<action nane="Logi n_i nput">
<resul t>/jsp/Login.jsp</resul t>
</ action>
<action name="Logi n" class="app23b. Login">
<result nane="success">/]sp/ Thanks.]sp</result>
<result nanme="input">/jsp/Login.jsp</result>
<par am name="hashCooki eName" >hashCooki e</ par an>
</ action>
<acti on nane="Cet Capt chal nage" >
<result type="captcha">
<par am nanme="hashCooki eNane" >hashCooki e</ par an»
<par am nanme="wor dLengt h" >6</ par an
<par am nane="i mageW dt h" >90</ par an
<par am nane="i mageHei ght " >25</ par an»
</result>
</ action>
</ package>

The first thing that should catch your attention is the extends attribute of the package
element. Its value is captcha-default, which represents a package in Captcha plug-in.
Since captcha-default extends struts-default, you inherit all the settings from the latter
in the package. In addition, you can use the new result type captcha. Note that the action
GetCaptchalmage has a captcha result type.

There is only one action class, the Login class, which is shown in Listing 23.3.

Listing 23.3. The Login class

package app23b;

i mport javax.servlet. http. Cooki e;

i mport javax.servlet.http. HtpServl et Request;

i mport org.apache. struts2.interceptor. Servl et Request Awnar e;
i mport com brai nysof tware. capt cha. Capt chaUtil ;

i mport com opensynphony. xwor k2. Act i onSupport ;

public class Login extends ActionSupport
i npl emrents Servl et Request Awar e {
private String userNaneg;
private String password,
private String word;
private String hashCooki eNane = "hash";
private HttpServl et Request httpServl et Request;
public void set Servl et Request (H t pSer vl et Request
htt pServl et Request) {
this. httpServl et Request = httpServl et Request;

/1l getters and setters not shown

public String execute() {
Cooki e[] cookies = httpServl et Request. get Cooki es();
String hash = null;
for (Cookie cookie : cookies) {
i f (cookie.getName() . equal s(hashCooki eNane)) ({
hash = cooki e. get Val ue();
br eak;

}

}
if (hash !'= null
&& user Nane. equal s("don")
&& password. equal s("secret")
&% CaptchaUtil.validate(word, hash)) {
return SUCCESS,
} else {
addActi onError("Login failed.");
return | NPUT;

Pay special attention to the execute method. How it works was explained in Chapter 19.
All I'll say here is the user can log in by using don and secret as the user name and
password and entering the word in the CAPTCHA image.

The Login.jsp page displays the Login form. This page is given in Listing 23.4 and the
Thanks.jsp, the page you'll see after a successful login, in Listing 23.5

Listing 23.4. The Login.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Login with CAPTCHA</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<di v id="gl obal ">
<h3>Ent er your user nane, password, and the inage word</h3>
<s:actionerror/>
<s:form action="Login">
<s:textfield nane="user Nane" | abel ="User Nane"/>
<s: password nanme="password" | abel ="Password"/>
<tr>
<td><i mg src="Cet Capt chal nage. acti on"/></td>
<td><s:textfield theme="sinple" nanme="word"
val ue=""/></td>
</[tr>
<s:submt val ue="Login"/>
</s:fornp
</ di v>
</ body>
</htm >

Listing 23.5. The Thanks.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >

<head>

<title>Thank you</title>

<style type="text/css">@nport url (css/main.css);</style>
</ head>

<body>

<di v id="gl obal ">

You' re | ogged in.

</ di v>

</ body>

</htm >

Note

You must copy both the brainycaptcha.jar and captchaplugin.jar files in your WEB-
INF/lib directory

To test the application, direct your browser to this URL:

http://1 ocal host: 8080/ app23b/ Logi n_i nput . acti on

You'll see the captcha image on the Login page as shown in Figure 23.2.

Figure 23.2. The CAPTCHA-facilitated login page

X
,z.:

: Address I@ http: fflocalbost: 20807 app23b)Login_input. action 1'\"’| Go

‘2 Login with CAPTCHA - Microsoft Internet Explorer |: §|

File Edit Wiew Favoribes Tools Help

Enter your user name, password,
and the image word

User Narme: | |

Password: | |

| |

I@ Cione ‘ﬂ Local intranet

Summary

Struts provides an elegant way to distribute code: through plug-ins. This chapter showed
how easy it is to write and use one.

Chapter 24. The Tiles Plug-in

Web applications need a consistent look, which you can achieve by using the same layout
for all the pages. A typical layout has a header, a footer, a menu, an ad section, and a body
content. Normally, many parts—such as the header, the footer, and the menu—look the
same in all pages. To support component reuse, a common part can be implemented as an
external resource. You then have the choice of using a frameset, a layout table, or div
elements to include these external resources. With a frameset, you reference each common
external resource using a frame. If layout tables or div elements are used, each JSP in your
application will employ several include files: one for the header, one for the footer, one for
the menu, one for the body content, and so on. The JSP technology provides the include
directive (<%@ include %> to include static files and the include tag (<jsp:include>=)
to include dynamic resources. However, as will be discussed in the first section of this
chapter, both JSP includes are not without shortcomings. If the layout needs changing, you
will have to change all your JSPs.

Tiles overcomes these failings and adds more features to enable you to lay out your pages
more easily and flexibly. First and foremost, Tiles provides a tag library that allows you to
create a layout JSP that defines the layout for all JSPs in an application. Changes to a layout
JSP will be reflected in all the JSPs referencing it. This means, only one page needs to be
edited should the layout change.

In addition to layout JSPs, Tiles allows you to write definition pages, which are more
powerful than the former. A definition page can have one of the two formats, JSP and XML.

This chapter teaches you how to make full use of Tiles by presenting a sample application
that uses Tiles.

Note

The Tiles framework provides its services through a series of tags in the Tiles Tag Library.
Tiles used to be a component of Struts 1. After it gained popularity, Tiles was extracted
from Struts as Tiles 2 and is now an independent Apache project. Its website is

http://tiles.apache.org/. The classes that make up Tiles are deployed in three JAR
files, tiles-core- VERSION, tiles-api- VERSION.jar, and tiles-jsp- VERSION.jar. In
addition, to use Tiles with Struts, you need the struts2-tiles-plugin- VERSION..jar. All
these JARs are deployed with Struts 2. You must copy these JARs to your WEB-INF/Ilib
directory

The Problem with JSP Includes

Figure 24.1 shows a page layout with a header, a footer, a menu, an ad section, and a
body content. All parts, with the exception of the body content, are common to all the JSPs.
The header comes from the header.jsp page, the footer from the footer.jsp page, the
menu from the menu.jsp page, and the ad section from the ad.jsp page.

Figure 24.1. A typical layout of a web page

Header

Body
Menu Content Ad

Footer

To achieve a consistent look, each of your JSPs must contain a layout table such as this.

<htm >
<head><titl e>Page title</title></head>
<body>
<t abl e>
<tr>
<td col span="3"><%@ ncl ude fil e="header.jsp"%</td>
</tr>
<tr>
<td wi dt h="120"> <% ncl ude fil e="menu.jsp"%</td>
<td>

body content

</td>

<td wi dt h="120"> <%@ nclude file="ad.jsp"%</td>
</tr>
<tr>

<td col span="3"><%@ ncl ude file="footer.jsp"%</td>
</tr>
</t abl e>
</ body>
</htm >

Note
A layout table is used just for illustration. You should always use CSS instead.
With this approach, what differentiates one JSP from another is the body content.

Now, what if you want to change the layout? For example, what if you want to make the
menu wider by 30 pixels? Or, what if you want the ad to appear on top of the menu? This

would require changing all your JSPs, which of course is a tedious and error-prone chore.
Tiles can help solve this problem.

Tiles Layout and Definition

This section explains how Tiles resolves the problems with JSP includes in defining a page
layout. There are two concepts explained in this section, layout and definition.

The Layout Page

A layout page is a template JSP that defines a layout. You can have as many layout JSPs as
you deem necessary. Each JSP that needs to use a layout will only need to reference the
layout JSP indirectly. If you need to change the layout of the whole application, you need
only change one file, the layout JSP.

Note

JSPs that need to use a layout do not directly reference the layout page. Instead, they refer
to a definition that references the layout page. You'll learn more about Tiles definitions in
the next subsection.

An example of a layout JSP is given in Listing 24.1. The JSP is named MyLayout.jsp.

Listing 24.1. The MyLayout.jsp Tiles layout JSP

<v@taglib uri="http://tiles.apache.org/tags-tiles" prefix="tiles"%

<htm >

<head>

<title><tiles:getAsString name="pageTitle"/></title>

<style type="text/css">@nport url (css/main.css);</style>

</ head>

<body>
<tiles:insertAttribute nane="header"/>
<tiles:insertAttribute name="body"/>
<tiles:insertAttribute name="footer"/>

</ body>

</htm >

There are two tags from the Tiles Tag Library used here, insertAttribute and getAsString.
The insertAttribute tag defines an insert point into which an attribute will be inserted. The
name attribute specifies the logical name of the resource that will be inserted.

The list of attributes for insertAttribute is given in Table 24.1.

Table 24.1. insertAttribute tag's attributes

Attribute Type Description

name String [The name of the attribute to insert. It will be ignored if the value
attribute is present.

value String [The attribute object to render.

flush boolean|A value of true causes the current page output stream to be flushed
before insertion.

ignore |boolean|A value of true indicates that no exception will be thrown if the
attribute specified by the name attribute cannot be found. The
default value for this attribute is false.

role String |Specifies the role that the current user must belong to in order for
this tag to be executed.

preparer |String [The fully qualified name of the preparer.

The getAsString tag specifies a variable whose String value will be passed by objects

referencing the layout JSP. You would imagine that the getAsString tag in Listing 24.1
would be passed a different page title by each JSP using this layout.

The complete list of getAsString attributes is given in Table 24.2.

Table 24.2. getAsString tag's attributes

Attribute Type Description
name String |A required attribute that specifies the name of the attribute.
ignore |boolean|A value of true indicates that no exception will be thrown if the

attribute specified by the name attribute cannot be found. The
default value for this attribute is false.

Table 24.2. getAsString tag's attributes

Attribute Type Description

role String |Specifies the role that the current user must belong to in order for
this tag to be executed.

Tiles Definitions

The second thing you need to grasp before you can use Tiles is definitions. A definition is a
layer between a layout page and a JSP using the layout. In Struts a Tiles definition
corresponds to a view. The view is normally a JSP, but Velocity or FreeMarker can also be
used.

By analogy, a layout page is like a Java interface and a definition page is a base class that
provides default method implementations of the interface. Any Java class that needs to
implement the interface can extend the base class, so that the class does not need to
implement a method unless it needs to override the default. By the same token, a JSP

references a definition page instead of a layout JSP. The diagram in Figure 12.2 provides
comparison between Java inheritance and Tiles' layout and definition pages.

Figure 24.2. Comparing Java inheritance and Tiles' layout and definition

=< [nterface ==
Myinterfac e

+rethod &) void
+methodB() woid

Definition JSP

+rmethod A0 void
+rmethodB():void

.y /

<2 uses =» =< uses ==

Client

Referencing JSP

Tiles definitions are defined in a tiles.xml file located in the WEB-INF directory of your
Struts application. A tiles.xml file must comply with the DTD file defined in the following
DOCTYPE declaration that must precede the root element.

<I DOCTYPE til es-definitions PUBLIC

"-// Apache Software Foundation//DID Tiles Configuration 2.0//EN
"http://struts.apache.org/dtds/tiles-config_2_0.dtd">

The root element for a tiles definition file is tiles-definition. Under it you write one or more
definition element, each of which defines a definition.

Here is a definition that references the MyLayout.jsp page.

<definition name="MDefinition" tenplate="/jsp/ MyLayout.jsp"/>

The name attribute specifies a name that will be used by a view to refer to this definition.
The template attribute specifies the template or layout page. In the example above, the
definition name is MyDefinition and the layout page is MyLayout.jsp.

A definition element is only useful if it contains one or several put-attribute elements. A
put-attribute element is used to pass a value to the layout page referenced by the
definition. For example, the definition elements below use the MyLayout.jsp page and
pass four values:

<definition name="Product” tenplate="/jsp/ MyLayout.jsp">
<put-attribute name="pageTitle" val ue="Product Info"/>
<put-attribute nane="header" val ue="/jsp/ Header.jsp"/>
<put-attribute nane="footer" val ue="/jsp/Footer.jsp"/>
<put-attribute nane="body" val ue="/jsp/Product.jsp"/>
</ definition>

<definition name="Thanks" tenplate="/jsp/ MyLayout.jsp">
<put-attribute nanme="pageTitle" val ue="Thank You"/>
<put-attribute nane="header" val ue="/j sp/ Header.jsp"/>
<put-attribute name="footer" val ue="/jsp/Footer.jsp"/>
<put-attribute nanme="body" val ue="/jsp/ Thanks.jsp"/>
</ definition>

The Product definition passes "Product Info" to the getAsString tag in the MyLayout.jsp
page and inserts the Header.jsp, Footer.jsp, and Product.jsp to the header, footer, body
insertAttribute tags, respectively. The Thanks definition passes "Thanks You" to the
getAsString tag and inserts the Header.jsp, Footer.jsp, and Thanks.jsp to the header,
footer, body insertAttribute tags, respectively.

A Struts result that needs to forward to a definition can refer to it by its name like this.

<action name="Product i nput">

<result nane="success" type="tiles">Product</result>
</ action>
<action nanme="Product add">

<result nane="success" type="tiles">Thanks</result>
</ action>

Contrast these tiles results with dispatcher results that forward to a JSP.

Struts Tiles Plugin

The Struts Tiles plug-in is meant to enable the use of Tiles in Struts applications. You need
to do the following to use Tiles.

1. Copy the Tiles JARs (tiles-core- VERSION.jar, tiles-api-VERSION.jar, tiles-jsp-
VERSION.jar) and the struts2-tiles-plugin-VERSION.jar files to WEB-INF/lib.
2. Register the StrutsTilesListener in your web.xml file.

<listener>
<listener-cl ass>
org. apache.struts2.tiles. StrutsTil esLi stener
</listener-class>
</listener>

3. Extend the tiles-default package in your package or define the following in your
package:

<result-types>
<result-type nane="til es"
class="org. apache.struts2.views.tiles. TilesResult"/>
</result-types>

4. Use tiles results in your actions.

Now let's look at an example.

Struts Tiles Example

The app24a application has two actions, Product_input and Product_add. Figure
24 .3 shows the directory structure of this application.

Figure 24.3. app24a directory structure

Footer.jsp
Header.jsp
MyLawouk, jsp
Product.jsp
|= Thanks.isp
o= WEB-IMNF
= [rclasses
- appZ4a
fub Product. class
|| struks.xml
+-[= lib
|Z| tiles.xml
|=| web.xml

The action declarations for this application are shown in Listing 24.2.

Listing 24.2. Action declarations

<package nanme="app24a" extends="til es-default">
<action nanme="Product i nput">
<result name="success" type="til es">Product</result>
</ action>
<action nane="Product add">
<result name="success" type="til es">Thanks</result>
</ action>
</ package>

The actions look like any ordinary actions, except that their results are of type tiles. Also,
instead of forwarding to JSPs, these results forward to definitions. The Product and Thanks

definitions are defined in the tiles.xml file shown in Listing 24.3.

Listing 24.3. The tiles.xml file

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>

<I DOCTYPE til es-definitions PUBLIC
"-// Apache Software Foundation//DTD Tiles Configuration 2.0//EN
"http://struts.apache.org/dtds/tiles-config 2 0.dtd">

<tiles-definitions>
<definition name="Product" tenplate="/jsp/ MyLayout.jsp">
<put-attribute nane="pageTitle" val ue="Product Input"/>
<put-attribute nane="header" val ue="/jsp/ Header.jsp"/>
<put-attribute nanme="footer" val ue="/jsp/ Footer.jsp"/>
<put-attribute nane="body" val ue="/jsp/Product.jsp"/>
</definition>

<definition nanme="Thanks" tenplate="/jsp/ MyLayout.sp">
<put-attribute nane="pageTitle" val ue="Thank You"/>
<put-attribute nane="header" val ue="/jsp/ Header.jsp"/>
<put-attribute nane="footer" val ue="/jsp/Footer.jsp"/>
<put-attribute nanme="body" val ue="/jsp/ Thanks.jsp"/>
</definition>
</tiles-definitions>

Both definitions use the MyLayout.jsp page as their template. It's clear that the result
associated with the Product_input action will be forwarded to the MyLayout.jsp page
using the attributes specified in the Product definition. The Product_add action, on the
other hand, will be forwarded to the same template using the attributes specified in the
Thanks definition.

The MyLayout.jsp page is the same as that in Listing 24.1 but reprinted in Listing
24 .4 for your reading convenience.

Listing 24.4. The MyLayout.jsp page

<U@taglib uri="http://tiles.apache.org/tags-tiles" prefix="tiles"%

<htm >

<head>

<title><tiles:getAsString nanme="pageTitle"/></title>

<style type="text/css">@nport url (css/main.css);</style>

</ head>

<body>
<tiles:insertAttribute nane="header"/>
<tiles:insertAttribute nane="body"/>
<tiles:insertAttribute name="footer"/>

</ body>

</htm >

The other JSPs are given in Listings 24.5 to 24.8.

Listing 24.5. The Product.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<di v id="gl obal ">
<h3>Add Product </ h3>
<s:form acti on="Product _add">
<s:textfield nane="nane" |abel ="Product Nane"/>
<s:textfield nane="description" |abel ="Description"/>
<s:textfield nane="price" |abel="Price"/>
<s:submt/>
</s:fornmp
</ div>

Listing 24.6. The Thanks.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<di v id="gl obal ">

The product has been added.

</ di v>

Listing 24.7. The Header.jsp page

<div style="border: 1px solid bl ack; hei ght: 60px; backgr ound: #dedede" >
<h1>Adni ni strati on Page</ hl>
</ di v>

Listing 24.8. The Footer.jsp page

<div style="text-align:right;border:1px solid black">
© 2008 Company Co.
</ di v>

You can run the application by invoking this URL.

http://1 ocal host: 8080/ app24a/ Product _i nput. acti on

Figure 24.4 shows how the layout is rendered.

Figure 24.4. Tiles in action

2 Product Input - Microsoft Internet Explorer |'__||'E|['>__<|
File Edit ‘Yiew Favorites Tools Help :*,.
: Address !SE http:/flocalhost :5080/app24a/Product_input. action v| =0

Administration Page

Add Product

Product Name: | |

Description: | |
Price: | |
©2008 Company Co)
@ Dare ‘-:_-j Local inkranet

The same consistent layout is used for the Product_add action, as shown in Figure

24.5.

Figure 24.5. The Thank You page

2 Thank You - Microsoft Internet Explorer |Z|[E|r‘5__(|
File Edit Wiew Favaorites Tools Help ;'f

: Address l@ http:/flocalhost: 8080/ app24a/Product _add. action; jsessioni \ﬂ (a0

Administration Page

The product has been added.

£2008 Company Co)

2] Dane % Local intranet

Summary

Tiles helps Struts developers create a consistent look throughout an application. Tiles, which
is vastly superior to JSP includes, allows you to write layout and definition pages. This
chapter is meant to be a brief introduction to Tiles 2. For more details on Tiles, consult the

documentation at its website http://tiles.apache.org/.

Chapter 25. JFreeChart Plug-ins

JFreeChart is a Java open source library for creating charts. Thanks to the two plug-ins
discussed in this chapter, you can too tap the power of this popular library. This chapter is
focused on how to use the plug-ins and not a tutorial on JFreeChart itself, even though a
brief introduction is given.

JFreeChart must be downloaded separately as its LGPL license does not permit it to be
distributed with Struts. Information on how to download it is available from its website:

http://ww. jfree.org/jfreechart,

The JFreeChart component is packaged into a JAR file named jfreechart-VERSION.jar. In
addition to this JAR file, you need the jcommon-VERSION.jar file that contains
dependencies needed by JFreeChart. The latter is included in the JFreeChart package, so
you don't need to download JCommon separately.

This chapter explains the standard JFreeChart plug-in that comes with Struts and a more
flexible plug-in from BrainySoftware that | wrote.

The JFreeChart API

This section discusses the most important types in the API. The complete list can be found
here:

http://ww. jfree.org/jfreechart/api/javadoc/index. htm

The JFreeChart Class

JFreeChart is a class in the org.jfree.chart package. A JFreeChart object represents a
chart. When using the JFreeChart plug-in in your Struts application, you produce a chart by
creating an instance of this class.

For example, you can create an instance of JFreeChart, hence a web chart, just by having
an instance of Plot, which will be discussed in the next subsection. Here are the
constructors of JFreeChart.

public JFreeChart (Pl ot plot)
public JFreeChart(java.lang.String title, Plot plot)

public JFreeChart(java.lang. String title, java.aw.Font titleFont,
Pl ot plot, bool ean createlLegend)

Plot

This abstract class is the main member of the org.jfree.chart.plot package. An instance of
Plot represents a plot that draws a chart. There are many subclasses of Plot that you can
use, one of which you'll see in the app25a application.

Using the Standard Plugin

Struts comes with a plug-in that utilizes JFreeChart. To use it, follow these steps.

1. Download the JFreeChart component and copy the jfreechart- VERSION.jar and
jcommon- VERSION.jar files to your application's WEB-INF/lib directory.

2. Copy the struts-jfreechart-plugin-VERSION.jar file to the WEB-INF/lib directory.
3. Make sure that your Struts package extends jfreechart-default.
4. Use chart as the result type and pass the width and height parameters to the result.

5. Your action class must have a chart property that returns the JFreeChart object to be
displayed.

The plug-in sends the chart as a PNG image. You may want to use an img element to
request the chart so that you can include the chart in an HTML page.

The plug-in accepts two parameters, width and height, to give you a chance to change the
chart size, which by default is 200px X 150px.

As an example, the app25a application shows an action that uses JFreeChart. The action
declarations for the application are given in Listing 25.1.

Listing 25.1. The action declarations

<package name="chart" extends="jfreechart-default">
<action nane="chart" cl ass="app20a. Get Chart Action">
<result nane="success" type="chart">
<par am nane="w dt h" >400</ par an>
<par am nane="hei ght " >300</ par an®
</result>
</ action>
</ package>
<package name="app25a" extends="struts-defaul t">
<action name="rmain">
<result nane="success">/jsp/Min.jsp</result>
</ action>
</ package>

There are two actions here. The chart action is part of the chart package that extends
jfreechart-default. This is the action that retrieves the chart. You can invoke this action by

itself to quickly view the resulting chart.

The second action, main, displays a JSP that contains an img element whose source
references the chart action. Note that both actions are contained in different packages. This
has to be so because jfreechart-default does not extend struts-default, so only chart

results are allowed under jfreechart-default.

The GetChartAction class is shown in Listing 25.2 and the Main.jsp page in Listing

25.3.

Listing 25.2. The GetChartAction class

package app25a;

inmport org.jfree.chart.JFreeChart;

i mport org.jfree.chart. axis. Number Axi s;

import org.jfree.chart. axis. Val ueAxis;

i mport org.jfree.chart.plot. XYPl ot;

import org.jfree.chart.renderer.xy. Standar dXYI t enRender er;
import org.jfree.data. xy. XYSeri es;

import org.jfree.data. xy. XYSeri esCol | ection;

i mport com opensynphony. xwor k2. Acti onSupport;

public class GetChartAction extends ActionSupport ({
private JFreeChart chart;

public String execute() throws Exception {
Val ueAxi s xAxi s = new Nunber Axi s("I nput | ncrease");
Val ueAxi s yAxi s = new Nunber Axi s(" Production");
XYSeries xySeries = new XYSeries(new Integer(1));
xySeri es. add(0, 200);
xySeries.add(1, 300);
xySeries.add(2, 500);
xySeries. add(3, 700);
xySeries. add(4, 700);
xySeri es. add(5, 900);

XYSeriesCol | ecti on xyDat aset =
new XYSeri esCol | ection(xySeries);

/'l create XYPI ot
XYPl ot xyPl ot = new XYPI ot (xyDataset, XxAxis, YAXis,
new St andar dXYl t enRender er (
St andar dXYI t enRender er . SHAPES AND LI NES)) ;
chart = new JFreeChart (xyPlot);
return SUCCESS,

public JFreeChart getChart() {
return chart;

Listing 25.3. The Main.jsp page

<v@taglib prefix="s" uri="/struts-tags"
<htm >

<head>
<style type="text/css">
img {

float:right;

margi n: 0 0 15px 20px;
paddi ng: 15px;
text-align:center;

</styl e>

</ head>

<body>

<s:url action="chart" id="url"/>

<ing src="<s:property value="url"/>"/>
<p>

%

XML is an open standard for data exchange as wel |

</ p>
</ body>
</htm >

as the

To test the plug-in, direct your browser to this URL.

http://1 ocal host: 8080/ app25a/ nai n. acti on

Figure 25.1 shows the result.

Figure 25.1. JFreeChart at work

A http:fflocalhost: BOBOfapp25almain.action - Microsofl Internet Explorer E|@|E|
Ele Edt Wiew Favorites Tooks Help g
: Address :EI hitp:f flocalhost 15080 app2Sajman, action i | G0
Eal
FML 15 an open o0a "

standard for data

exchange as well as

the format uzed in Lt

web services SOAP 8O0

messages. Asa

format for data

exchange often used

to catry sensitive 300

data, there needs to 200

be a way of secunng n

AL messages, and

securing SOAF 0 05 10 15 20 25 30 35 40 45 50

messages involves Input Increase

signing them. JTSE

1035, XL Digital IEI

Signature APT,

defines a standard Java AP for digitally sigrang XL documents. The APT s particularly

usefill for digitally signing 3L documents and validating JVL signatures. In additon, if

You or your company is in the business of making sofiwarc for making software, younced &
] Dene Wd Local intranet

Production

aThere are two things in the JFreeChart plug-in that | did not really like and prompted me to
write my own plug-in, the BrainySoftware JFreeChart plug-in. The first is the fact that
Jjfreechart-default does not extend struts-default. The second is the fact that changing a
chart size requires updating the Struts configuration file. The exact size is often in the
graphic designer's hand and if he or she could resize the image without having to bother the
application administrator, it would be a much coveted feature.

Using the BrainySoftware JFreeChart Plugin

Like the standard JFreeChart plugin, The BrainySoftware JFreeChart plugin is a free
component that can be used in non-commercial and commercial environments. Unlike the
standard plug-in, however, the BrainySoftware JFreeChart plug-in, which is included in the
ZIP that contains the sample applications for this book, extends struts-default and allows
the graphic designer to resize the chart without the help of a programmer.

Using it is not harder than the standard plug-in either, you just need to follow these steps.

1. Download the JFreeChart component and copy the jfreechart- VERSION.jar and
jcommon-VERSION jar files to the WEB-INF/lib directory.

2. Copy the brainyjfreechartplugin.jar file to the WEB-INF/lib directory.
3. Make sure that your Struts package extends brainyjfreechart-default.
4. Use brainyjfreechart as the result type.

5. Your action class must have a chart property that returns the JFreeChart object to be
displayed. Optionally, you can have chartWidth and chartHeight properties to
determine the chart size.

Application app25b shows an action that uses Brainy Software's JFreeChart plug-in. The
action declarations are shown in Listing 25.4.

Listing 25.4. Action declarations for app25b

<package nanme="app25b" extends="brainyjfreechart-default">
<action nane="chart" cl ass="app20b. Get Brai nyChart Acti on">
<result nanme="success" type="brainyjfreechart"/>
</ action>
<action name="nmain">
<result nanme="success" type="di spatcher" >
/jsp/ Main.jsp
</result>
</ action>
</ package>

The action class is given in Listing 25.5. This is similar to the one in Listing 25.2,
however it has two additional properties, chartWidth and chartHeight.

Listing 25.5. The GetBrainyChartAction class

package app25b;

render er. xy. St andar dXYI t enRender er ;

inmport org.jfree.chart.JFreeChart;

i mport org.jfree.chart. axis. Number Axi s;

import org.jfree.chart. axis. Val ueAxis;

i mport org.jfree.chart.plot. XYPl ot;

import org.jfree.chart.

import org.jfree.data. xy. XYSeri es;

i mport org.jfree.data. xy. XYSeri esCol | ection

i mport com opensynphony. xwor k2. Acti onSupport;

public class GetBrainyChart Acti on extends ActionSupport {

private JFreeChart chart;
private int chartWdth =
private int chartHei ght

250;
= 300;

public String execute() {
Val ueAxi s xAxis =
Val ueAxi s yAxis =

XYSeries xySeries =
xySeries.add(0, 200);
xySeries. add(1, 300);
xySeries. add(2, 500);
xySeries. add(3, 700);
xySeries. add(4, 700);
xySeries. add(5, 900);
XYSeriesCol | ecti on xyDat aset

new Nunber Axi s(" 1 nput
new Nunber Axi s(" Production");
new XYSeries(new Integer(1));

I ncrease");

new XYSeri esCol | ection(xySeries);

/'l create XYPI ot
XYPl ot xyPl ot =

new XYPI ot (xyDat aset,

XAXi s, YAXis,

new St andar dXYI t enRender er (
St andar dXYI t enRender er. LI NES)) ;

chart =
ret urn SUCCESS;

}

/'l getters and setters not shown

new JFreeChart (xyPlot);

Invoke this URL to test the application.

http://1 ocal host: 8080/ app25b/ mai n. acti on

Figure 25.2 shows the result.

Figure 25.2. Using BrainySoftware JFreeChart plug-in

23 http:#Hlocalhost: BOBO/app25b/main.action - Microsoft... E”E”gj

File Edit \Miew Favorites Tools Help ,'
. Address leE http: [flocalhost : 30807 appesh main, ackion :| =4 Go
s
HIL 15 an open Gnp
standard for data
800 -

exchange as well as
the format used in Lida '
web services SOAP ~ 600 - '

[=]
tessages. Asa 5 00
format for data =

2 400
exchange often used o
to carry sensitive 300 -
data, there needs to 200
ke a way of securing el
ML messages, and
secuning SOAP i : = e =
messages mvolves Input Increase
sigrung them. JSE

e e 2
105, XL Digital
Signature APT,
defines a standard Java APT for digtally signing XL documents.
The APT iz particularly uzsefil for digtally signing XML documents
ﬁ“fj Tfﬁ1lfjﬁh“ﬂ Y-r‘..ﬂ-r ﬂl‘ﬂﬂﬁh‘?ﬁl" Ti"l ﬁfja‘jihﬂ“ _;FTTA'|'| S TTAS114 v—
.'E_Ll Dane &J Local intranet
Summary

JFreeChart is a powerful open-source library for generating charts. To use it in Struts, you
need a plug-in. At least two free JFreeChart plug-ins are available, the standard one that

comes with Struts and the one downloadable from brainysoftware.com. This chapter
showed how to use both.

Chapter 26. Zero Configuration

Struts configuration is easy, but it is possible not to have to configure at all. In other words,
zero configuration. Instead of mapping actions and results in the struts.xml file, you
annotate the action class. And if you're tired of annotating, you can use the CodeBehind
plug-in to handle that for you.

Note
Appendix C, "Annotations" explains annotations.

This chapter explains zero configuration and the CodeBehind plug-in.

Conventions

Since you will not have a configuration file if you decide to go the zero configuration way,
you will need to tell Struts how to find your action classes. You do this by telling Struts the
Java packages of the action classes used in your application by including, in your web.xml
file, an actionPackages initial parameter to the Struts filter dispatcher. Like this.

<filter>
<filter-name>struts2</filter-nanme>
<filter-class>
org. apache. strut s2. di spatcher. Fil ter Di spat cher
</filter-class>
<init-paranp
<par am nanme>act i onPackages</ par am nane>
<par am val ue>app26a, com exanpl e</ par am val ue>
</init-paranp
</[filter>

The value of the actionPackages parameter is a comma-delimited list of packages that
Struts needs to scan for action classes. In the example above, Struts will scan the app26a
package and its sub-packages as well as the com.example package and its sub-packages.

An action class of a zero configuration application must either implement the
com.opensymphony.xwork2.Action interface (or by extending
com.opensymphony.xwork2.ActionSupport) or has an Action suffix on its name. For
example, a POJO class named CustomerAction will comply. A child class of ActionSupport
named User will also be acceptable.

Now, since without a struts.xml file you cannot give an action a name, you rely on Struts to
do that. What name does Struts give your action? The action name will be the same as the
name of the action class after the first letter of the class name is converted to lower case
and its Action suffix, if any, is removed. Therefore, the action name for an action class
named EmployeeAction will be employee, and you can invoke it using the URI
employee.action.

Of course you must also take into account the namespace. If an action class is not a
member of a package passed to the actionPackages parameter, but rather a member of its

sub-package, the part of the subpackage name is not in the actionPackages parameter will
be the namespace. For instance, if com.example is passed to the actionPackages parameter,
the action class com.example.action.CustomerAction will be accessible through this URI:

[/ action/customner. action

Annotations

By following the conventions explained in the previous section, you can invoke action
classes in your zero configuration application. But hold on, Struts does not know yet what
results are associated with those action classes. This time you need to annotate, using the
annotation types discussed in this section.

@Result

The org.apache.struts2.config.Result annotation type is used to define an action result.
It has these elements, of which only value is required.

e name. The name of the result that corresponds to the return value of the action
method.
params. An array of Strings used to pass parameters to the result.
type. The class of the result type whose instance will handle the result.

e value. The value passed to the result.

For instance, the action class in Listing 26.1 is annotated @Result.

Listing 26.1. The Customer action class

package app26a;

i mport org.apache. struts2.config. Result;

i mport org. apache. struts2. di spatcher. Servl et Di spat cher Resul t;
i mport com opensynphony. xwor k2. Acti onSupport;

@Resul t (nanme="success", val ue="/jsp/ Custoner.jsp",
type=Ser vl et Di spat cher Resul t. cl ass)
public class Custoner extends ActionSupport {
public String execute() {
Systemout.printin("Help |I'm being executed...");
return SUCCESS;

The annotation in Listing 26.1 indicates to Struts that if the action method returns
"success," Struts must create an instance of ServletDispatcherResult and pass the
instance "/jsp/Customer.jsp.” The ServletDispatcherResult class is the underlying class
for the Dispatcher result type. Practically this means the same as this.

<result name="success" type="di spatcher">/jsp/Custoner.jsp</result>

You can use this URL to test it:

http://1 ocal host: 8080/ app26a/ cust oner. acti on

Note

When going zero configuration, you need to get familiar with the underlying classes for the
bundled result types, not only their short names. You can look up the class names in

Appendix A.

@Results

If an action method may return one of two values, say "success" or "input,"” you cannot use
two Result annotations. Instead, use @Results. The syntax for this annotation type is as
follows.

@Results({ @Result-l, @Result-2, ... @esult-n })

For example, the Supplier action class in Listing 26.2 may return "success" or "error." It
is annotated @Results.

Listing 26.2. The Supplier action class

package app26a;

i mport org.apache. struts2.config. Result;

i mport org.apache. struts2.config. Results;

i mport org.apache. struts2. di spatcher. Servl et Di spat cher Resul t;
i mport com opensynphony. xwor k2. Acti onSupport;

@Resul ts({
@Resul t (nanme="success", val ue="/jsp/ Custoner.jsp",
type=Ser vl et Di spat cher Resul t. cl ass),
@Resul t (name="error", value="/jsp/Error.jsp",
type=Ser vl et Di spat cher Resul t. cl ass)

1))

public class Supplier extends ActionSupport {
private String namne;
public String execute() {

if (name == null || nane.length() < 4) {
return ERROR;
} else {

return SUCCESS;
}
}

/1 getter and setter not shown

To test the class, use either one of the following URLs:

http://1 ocal host: 8080/ app26a/ suppli er. action
http://1 ocal host: 8080/ app26a/ suppl i er. acti on?nane=what ever

@Namespace

Use this annotation type to override the namespace convention. It has one element, value,
which specifies the namespace for the annotated class.

For example, the actionPackages value of app26a is app26a. By convention, the
namespace of the action class app26a.admin.action.EditCustomer will be
/admin/action, and the class can be invoked using this URI:
/admin/action/editCustomer.action. To override this, use the Namespace annotation

type.

As an example, the EditCustomer class in Listing 26.3 is annotated @ Namespace.
Since the value of the annotation is "/," it can be invoked using this URI:
/editCustomer.action.

Listing 26.3. The EditCustomer action class

package app26a. adm n. acti on;

i mport org.apache. struts2. confi g. Nanespace;

i nport org.apache. struts2.config. Result;

i mport org.apache. struts2. di spatcher. Servl et Di spat cher Resul t;
i mport com opensynphony. xwor k2. Acti onSupport;

@Resul t (name="success", val ue="/jsp/ Custoner.jsp",
type=Servl et Di spat cher Resul t. cl ass)

@\anmespace(val ue="/")

public class EditCustoner extends ActionSupport {

}

You can invoke the editCustomer action using this URL:

http://1ocal host: 8080/ app26a/ edi t Cust oner . acti on

Consequently, you can no longer use this URL to invoke the editCustomer action.
http://1 ocal host: 8080/ app26a/ adm n/ acti on/ edi t Cust oner . acti on

@ParentPackage

Use this annotation type to inherit an XWork package other than struts-default. For
example, this annotation indicates that the action belongs to the captcha-default package:

@ar ent Package(val ue="struts-default™)

The CodeBehind Plug-in

The CodeBehind plug-in does two things:

1. Provide mappings for actions with no action classes.
2. Find forward views for action classes without explicit @Result annotations.

To use this plug-in, you must first copy the struts-codebehind-plugin-VERSION.jar file
to your WEB-INF/Iib directory.

You still need to pass an actionPackages initial parameter in your web.xml file so that
Struts can find default action classes.

For example, the app26b application shows how to use the CodeBehind plug-in. To the
filter dispatcher, we pass an actionPackages initial parameter, as shown in Listing

26.4.

Listing 26.4. The filter declaration

<filter>
<filter-nane>struts2</filter-name>
<filter-class>
or g. apache. strut s2. di spat cher. Fi |l t er Di spat cher
</[filter-class>
<init-parane
<par am nanme>act i onPackages</ par am nane>
<par am val ue>app26b</ par am val ue>
</init-paranr
</[filter>

The Login class in Listing 26.5 is an action class in app26b. By using the CodeBehind
plug-in, the Login action will be able to forward to the correct JSP after the action is
executed.

Listing 26.5. The Login action class

package app26b;
i nport com opensynphony. xwor k2. Acti onSupport;

public class Login extends ActionSupport {
private String userNane;
private String password;
public String execute() {
if (userName !'= null && password != null

&& user Nane. equal s("don")
&& password. equal s("secret")) {
return SUCCESS;
} else {
return | NPUT;
}

}

/1l getters and setters not shown

The action method (execute) returns either "input" or "success." As such, the forward JSP
will have to be either login-input.jsp or login-success.jsp. These JSPs are shows in

Listings 26.6 and 26.7. Note that in Listing 26.6, because there's no explicit action
declaration, you need to pass a URI and not an action name to the form's action attribute.

Listing 26.6. The login-input.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<htm >
<head>
<title>Login</title>
<style type="text/css">@nport url (css/main.css);</style>
</ head>
<body>
<div id="global" style="w dt h: 400px" >
<h3>Ent er your user nane and password</h3>
<s:form action="I ogi n. acti on">
<s:textfield nane="user Nane" | abel ="User Nane"/>
<s: password nane="password" | abel ="Password"/>
<s:submit val ue="Login"/>
</s:formp
</ di v>
</ body>
</htm >

Listing 26.7. The login-success.jsp page

<htm >
<head>
<titl e>CodeBehi nd</titl e>
</ head>

<body>
You' re | ogged in.
</ body>
</htm >

To test the application, direct your browser to this URL:

http://1 ocal host: 8080/ app26b/ | ogi n-i nput. acti on

The CodeBehind plug-in will kick in, invoke the Login action, and forward to the login-
input.jsp page. The result is shown in Figure 26.1.

Figure 26.1. The login-input.jsp page

2 Cannot find server - Microsoft Internet Explorer |'._||E|[z|
File Edit ‘iew Favorites Tools Help ﬁr
. Address |$E:| hkkp s flocalhost: 3080/ app2ab)login-input, ackion Vl G0

Enter your user name and password

User Name: | |
Password: | |
&] Dane) Internet

When you submit the form, the field values are sent to this URL:

http://1 ocal host: 8080/ app26b/ | ogi n. acti on

Summary

This chapter discussed the zero configuration feature in Struts that can match a URL with an
action class. This feature does not match actions and results, however, and for the latter
you need the CodeBehind plug-in.

Chapter 27. AJAX

The Struts Dojo plug-in bundles the Dojo Toolkit, an open source JavaScript framework, and
provides custom tags to build AJAX components effortlessly. Thanks to this plug-in you can
even use AJAX even if you know nothing about JavaScript. However, a solid command of
JavaScript will help you tap the power of AJAX.

This chapter discusses the tags in the plug-in. To test the examples in this chapter, you
have to be using Struts 2.1.0 or later. At the time of writing, version 2.1 has not been
released and can be downloaded from here.

http:// peopl e. apache. org/ bui |l ds/struts/2.1.0/

The Struts Dojo plug-in itself is not included in the lib directory of the Struts distribution and
must be extracted from the Showcase application that comes with Struts. Unfortunately, the
version of Dojo in this plug-in is 0.4, which is a much older version than what is available at
the time of writing (version 1.01). Version 0.4 is very slow compared with its successors.
The next release of the Struts Dojo plug-in is expected to bring Dojo 1.01 or later to the
table.

Another unfortunate fact is that Dojo 1.0 or later is not backward compatible with version
0.4, which means any code you write that uses this plug-in may not work with a future
version of the plug-in. Having said that, the plug-in is still great software that can help you
write AJAX applications easily.

Note

Another popular JavaScript framework is Prototype (http://prototypejs.org/), which provides
a set of JavaScript objects with a very small footprint, enabling fast download. In addition,
Scriptaculous (http://script.aculo.us/) provides AJAX components that are based on
Prototype.

AJAX Overview

AJAX is a name coined by Jesse James Garrett of Adaptive Path for two old technologies,
JavaScript and XML. AJAX applications asynchronously connect to the server to collect more
data that can be displayed in the current web page. As a result, new information can be
shown without page refresh. Google was the first to popularize this strategy with their Gmail
and Google Maps applications. However, Google was not the first to make full use of the
XMLHttpRequest object, the engine that makes asynchronous connections possible.
Microsoft added it to Internet Explorer 5 and seasoned developers discovered ways to reap
its benefits. Soon afterwards Mozilla browsers also had their own version of this object. Prior
to XMLHttpRequest, people used DHTML and HTML frames and iframes to update pages
without refresh.

Despite advance in client-side technologies, writing JavaScript code, hence AJAX
applications, is still intimidating. Even though IDEs are available for writing JavaScript code,
programmers still have to overcome the biggest challenge in writing client-side applications:

browser compatibility. It is a fact of life that every browser implements JavaScript slightly
differently from each other. Even the same browser does not interpret JavaScript in the
same way in different operating systems. As a result, you have to test your script in various
operating systems using various browsers and write multiple versions of code that work in
all browsers.

This is where a JavaScript framework like Dojo comes to rescue. With Dojo you only need to
write and test once and let it worry about browser compatibility. Needless to say, using the
Struts Dojo plug-in as your AJAX platform saves an awful lot of time.

Dojo’'s Event System

JavaScript is an event-based language, but managing events in a cross browser
environment has proved a nightmare. Dojo comes to rescue by providing an identical way of
working with events.

Dojo allows you to connect a JavaScript function with an event. As such, you can create an
event handler that will get called when an event is triggered. The Dojo connect method links
an event with a function. The disconnect method severs a connection. Dojo’s event object is
the normalized version of the JavaScript event object. Unlike the latter, which behaves
slightly differently in different browsers and hence making developing cross browser
applications very difficult, the former provide a uniform interface that works the same in all
supported browsers. Using Dojo saves you time because you don't need to test and tweak
your code to cater for a specific browser.

In addition to the normalized event object, Dojo supports a topic-based messaging system
that enables anonymous event communication. Anonymous in the sense that you can
connect elements in a web page that have no previous knowledge about each other. A topic
is logical channel similar to an Internet mailing list. Anyone interested in a mailing list can
subscribe to it to get notification every time a subscriber broadcasts a message. With a
topic-based messaging system such as that in Dojo, a web object (a button, a link, a form,
a div element) may subscribe to a topic and publish a topic. This means, an AJAX
component can be programmed to do something upon the publication of a topic as well as
publish a topic that may trigger other subscribers to do something.

To publish a topic, you use the publish method. Bear in mind that this is how you do it in
Dojo 0.4, which may not work in newer versions of Dojo.

doj o. event . topi c. publish(topi cNane, argunents)

The topic name can be anything. As long as the other parties know a topic name, they can
subscribe to the topic.

In AJAX programming, you normally subscribe to a topic because you want something to be
done upon a message publication to that topic. As such, when you subscribe to a topic, you
also define what you need to do or what function to call. Here is the method to subscribe to
a topic in Dojo. Again, this is Dojo 0.4 we're talking here.

Doj 0. event . t opi c. subscri be(topi cNane, functi onNane)

The tags in the Struts Dojo plug-in make it even easier to work with topics. Most tags can
subscribe and publish a topic without JavaScript code. For instance, the a tag has an
errorNotifyTopics attribute you can use to list the topics to publish when the tag raises an
error. The div tag has a startTimerListenTopics attribute to accept a list of topics that will
cause the rendered div element to start its internal timer.

Topic-based messaging system will become clearer after you learn about the tags.

Using the Struts Dojo Plug-in
To use the tags in the plug-in, you must follow these steps.
1. Addthistaglib directive to the top of your JSPs.

<v@taglib prefix="sx" uri="/struts-dojo-tags" %

2. Copy the Struts Dojo plug-in to your WEB-INF/Iib directory. This plug-in isincluded
in thelib directory of this book.

3. Write the head tag on each JSP.

Let's now look at the tags in the Struts Dojo plug-in.

The head Tag

The head tag renders JavaScript code that downloads Dojo files and configures Dojo. This
tag must be added to every JSP that uses other Struts Dojo tags.

Table 27.1 shows the attributes of the head tag.

Table 27.1. head tag attributes

Name Data Default Description
Type Value

baseRelativePath |String |/struts/dojo |The path to the Dojo distribution folder

cache boolean (true Indicates if Dojo files should be cached by the
browser.

Table 27.1. head tag attributes

Name Data Default Description
Type Value
compressed boolean (true Indicates whether or not the compressed

version of Dojo files should be used.

debug boolean (false Indicates whether or not Dojo should be in
debug mode.

extralocales String Comma delimited list of locales to be used by
Dojo.

locale String Overrides Dojo locale.

parseContent boolean false Indicates whether or not to parse the whole

document for widgets.

The compressed attribute, which is true by default, indicates whether or not the
compressed version of Dojo files should be used. Using the compressed version saves
loading time, but it is hard to read. In development mode you may want to set this attribute
to false so that you can easily read the code rendered by the tags discussed in this chapter.

In development mode you should also set the debug attribute to true and the cache
attribute to false. Turning on the debug attribute makes Dojo display warnings and error
messages at the bottom of the page.

Here is how your head tag may look like in development mode.

<sx: head debug="true" cache="fal se" conpressed="fal se" />

In production, however, it's likely you'll have this.

<sx: head/ >

The div Tag

This tag renders an HTML div element that can load content dynamically. The rendered div
element will also have an internal timer to reload its content at regular intervals. An ad
rotator can be implemented using the div tag without programming.

The attributes for this tag are listed in Table 27.2.

Table 27.2. div tag attributes

Name Data Default Description
Type Value

afterNotifyTopics String Comma delimited topics to be published
after the request, if the request is
successful.

autoStart boolean [true Whether or not to start the timer
automatically.

beforeNotifyTopics String Comma delimited topics to be published
before the request.

closable boolean [false Whether or not to show a Close button
when the div is inside a tabbed panel

delay integer The number of milliseconds that must
elapse before the content is fetched

errorNotifyTopics String Comma delimited topics to be published
after the request, if the request fails.

errorText String The text to be displayed if the request
fails.

executeScripts boolean [false Indicates whether or not JavaScript code

in the fetched content should be
executed.

Table 27.2. div tag attributes

Name Data Default Description
Type Value

formFilter String The function to be used to filter the form
fields.

formld String The identifier of the form whose fields
will be passed as request parameters.

handler String The JavaScript function that will make the
request.

highlightColor String The color to highlight the elements
specified in the targets attribute.

highlightDuration integer (2000 The duration in milliseconds the elements
specified in the targets attribute will be
highlighted. This attribute will only take
effect if the hightlightColor attribute has a
value.

href String The URL to call to fetch the content.

indicator String The identifier of the element that will be
displayed while making the request.

javascriptTooltip boolean [false Indicates whether or not to use JavaScript
to generate tooltips.

listenTopics String The topics that will trigger the remote
call.

loadingText String |Loading... [The text to display while content is being
fetched.

notifyTopics String Comma delimited topics to be published

Table 27.2. div tag attributes

Name Data Default Description
Type Value

before and after the request and upon an
error occurring.

openTemplate String The template to use for opening the
rendered HTML

parseContent boolean [true Whether or not to parse the returned
content for widgets.

preload boolean |true Whether or not to load content when the
page is loaded.

refreshOnShow boolean [false Whether or not to load content when the
div becomes visible. This attribute takes
effect only if the div is inside a tabbed
panel.

separateScripts boolean {true Whether or not to run the scriptin a
separate scope that is unique for each
tag.

showErrorTransportText boolean (true Whether or not errors will be shown.

showloadingText boolean [false Whether or not loading text will be
shown on targets

startTimerListenTopics String Topics that will start the timer

stopTimerListenTopics |String Topics that will stop the timer

transport String | XMLHttp |The transport for making the request

Transport

Table 27.2. div tag attributes

Name Data Default Description
Type Value
updateFreq integer The frequency (in milliseconds) of content
update

The div tag also inherits the common attributes specified in Chapter 5, "Form Tags."

Three examples are given for this tag.

Example 1

The Divl.jsp page in Listing 27.1 uses a div tag that updates itself every three
seconds. The href attribute is used to specify the server location that will return the content
and the updateFreq attribute specifies the update frequency in milliseconds. The internal
timer starts automatically because by default the value of the autoStart attribute is true.

Listing 27.1. The Divl.jsp page

<vg@taglib prefix="sx" uri="/struts-dojo-tags" %
<htm >
<head>
<title>Div</title>
<sx: head/ >
</ head>
<body>
<sx:div
cssStyl e="border: 1px solid bl ack; hei ght: 75px; wi dt h: 2100px"
hr ef =" Server Ti me. acti on"
updat eFr eq="3000"
hi ghl i ght Col or =" #cecdee" >
Server time will be displayed here
</ sx: div>
</ body>
</htm >

An interesting feature of this tag is the automatic highlight color that will highlight the div
element and then fade. You can specify the highlight color using the highlightColor
attribute.

Use this URL to test the div tag in Listing27.1.

http://1ocal host: 8080/ app27a/ Di v1. action

Example 2

The Div2.jsp page in Listing 27.2 showcases a div tag whose startTimerListenTopics
attribute is set to subscribe to a startTimer topic. Upon publication of this topic, the div's
internal timer will start. A submit button is used to publish a startTimer topic.

Listing 27.2. The Div2.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<v@taglib prefix="sx" uri="/struts-dojo-tags" %
<htm >
<head>
<title>Div</title>
<sx: head/ >
</ head>
<body>
<sx:div
cssStyl e="border: 1px solid bl ack; hei ght: 75px; wi dt h: 100px"
hr ef =" Server Ti me. acti on"
updat eFr eg="2000"
autoStart="fal se"
start Ti merLi stenTopi cs="start Ti mer"
hi ghl i ght Col or =" #ddaaba" >
Server tine will be displayed here
</ sx:div>
<s:subnmit theme="sinple" value="Start tinmer"
oncl i ck="doj o. event.topic. publish('startTimer")"
/>
</ body>
</htm >

To test this example, direct your browser here:

http://1 ocal host: 8080/ app27al/ Di v2. acti on

Click the Start timer button to start the timer.

Example 3

This div tag in the Div3.jsp page in Listing 27.3 shows how you can use a div tag to
publish a topic.

Listing 27.3. The Div3.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<v@taglib prefix="sx" uri="/struts-dojo-tags" %

<htm >

<head>

<title>Div</title>

<sx: head/ >

<script type="text/javascript">

var counter = 1,

doj 0. event.topi c. subscri be("updat eCounter”, function(event, w dget){
doj o. byl d("counter").innerHTM. =

"The server has been hit "

+ counter++ + " tinmes";

1)
</script>
</ head>
<body>
<sx:div
cssStyl e="border: 1px solid bl ack; hei ght: 75px; wi dt h: 100px"
hr ef =" Server Ti ne. acti on"
updat eFr eg="2000"
after Noti f yTopi cs="updat eCount er"
hi ghl i ght Col or =" #ddaaba" >
Server tine will be displayed here
</ sx: div>
<div id="counter">
</ div>
</ body>
</htm >

The div tag has its internal timer set to set off every two seconds. Every time it does, it
publishes an updateCounter topic, which is assigned to its afterNotifyTopics attribute.
The Dojo subscribe method is used to subscribe to the topic and run the specified function
every time the div tag publishes the topic.

doj o. event . topi c. subscri be("updat eCounter™, function(event, w dget){
doj o. byl d("counter™).innerHTM. =
"The server has been hit " + counter++ + " tines";

1)

The function associated with the updateCounter topic increments a counter and changes
the content of a second div tag.

To test this example, direct your browser to this URL.

http://1 ocal host: 8080/ app27al/ Di v3. acti on

The a Tag

The a tag renders an HTML anchor that, when clicked, makes an AJAX request. The targets
attribute of the tag is used to specify elements, normally div elements, that will display the

AJAX response. If nested within a form, this tag will submit the form when clicked. Table
27.3 lists the attributes of the a tag.

Table 27.3. a tag attributes

Name Data Default Description
Type Value
afterNotifyTopics String Comma delimited topics to be published
after the request, if the request is
successful.
ajaxAfterValidation boolean [false Indicates whether or not to make an

asynchronous request if validation
succeeds. This attribute will only take
effect if the validate attribute is set to
true.

beforeNotifyTopics String Comma delimited topics to be published
before the request.

errorNotifyTopics String Comma delimited topics to be published
after the request, if the request fails.

errorText String The text to be displayed if the request
fails.

executeScripts boolean [false Indicates whether or not JavaScript code
in the fetched content should be
executed.

formFilter String The function to be used to filter the form

fields.

Table 27.3. a tag attributes

Name Data Default Description
Type Value

formld String The identifier of the form whose fields
will be passed as request parameters.

handler String The JavaScript function that will make the
request.

highlightColor String The color to highlight the elements
specified in the targets attribute.

highlightDuration integer 2000 The duration in milliseconds the elements
specified in the targets attribute will be
highlighted. This attribute will only take
effect if the hightlightColor attribute has a
value.

href String The URL to call to fetch the content.

indicator String The identifier of the element that will be
displayed while making the request.

javascriptTooltip boolean [false Indicates whether or not to use JavaScript
to generate tooltips.

listenTopics String The topics that will trigger the remote call

loadingText String |Loading... [The text to display while content is being
fetched

notifyTopics String Comma delimited topics to be published
before and after the request and upon an
error occurring

openTemplate String The template to use for opening the

Table 27.3. a tag attributes

Name Data Default Description
Type Value

rendered HTML

parseContent boolean [true Whether or not to parse the returned
content for widgets.

separateScripts boolean [true Whether or not to run the script in a
separate scope that is unique for each
tag.

showErrorTransportText boolean (true Whether or not errors will be shown.

showlLoadingText boolean [false Whether or not loading text will be
shown on targets

targets String Comma delimited identifiers of the
elements whose content will be updated

transport String |[XMLHttp |The transport for making the request

Transport
validate boolean [false Whether or not AJAX validation should be

performed

The a tag also inherits the common attributes specified in Chapter 5, "Form Tags."

For instance, the A.jsp page in Listing 27.4 uses an a tag to populate the div elements

divl and div2.

Listing 27.4. The A.jsp page

<v@taglib prefix="sx" uri="/struts-dojo-tags" %
<htm >
<head>
<title>A</title>
<sx: head/ >
</ head>
<body>
<sx:div id="divl"
cssStyl e="hei ght: 50px; wi dt h: 200px; border: 1px solid brown"/>
<sx:div id="div2"
cssStyl e="hei ght: 50px; wi dt h: 200px; border: 1px solid brown"/>
<sx:a href="ServerTi ne.action" targets="divl, div2">
Update Tine
</sx:a>
</ body>
</htm >

To test the tag, direct your browser to this location.

http://1ocal host: 8080/ app27al/ A. acti on

The submit Tag

The submit tag renders a submit button that can submit a form asynchronously. There are
three rendering types for this tag that you can choose by assigning a value to its type
attribute. The three rendering types are:

e input. Renders submit as <input type="submit" .../>
e button. Renders submit as <button type="submit" .../>
e image. Renders submit as <input type="image" ... />

Like the a tag, submit has a targets attribute to specify elements that will display the
result of the form submit.

The submit tag attributes are listed in Table 27.4. In addition, the submit tag inherits
the common attributes specified in Chapter 5, "Form Tags."”

Table 27.4. submit tag attributes

Name Data Default Description
Type Value

afterNotifyTopics String Comma delimited topics to be published
after the request, if the request is
successful.

ajaxAfterValidation boolean [false Indicates whether or not to make an
asynchronous request if validation
succeeds. This attribute will only take
effect if the validate attribute is set to
true.

beforeNotifyTopics String Comma delimited topics to be published
before the request.

errorNotifyTopics String Comma delimited topics to be published
after the request, if the request fails.

errorText String The text to be displayed if the request
fails.

executeScripts boolean [false Indicates whether or not JavaScript code
in the fetched content should be
executed.

formFilter String The function to be used to filter the form
fields.

formld String The identifier of the form whose fields
will be passed as request parameters.

handler String The JavaScript function that will make the

request.

Table 27.4. submit tag attributes

Name Data Default Description
Type Value

highlightColor String The color to highlight the elements
specified in the targets attribute.

highlightDuration integer 12000 The duration in milliseconds the elements
specified in the targets attribute will be
highlighted. This attribute will only take
effect if the hightlightColor attribute has a
value.

href String The URL to call to fetch the content.

indicator String The identifier of the element that will be
displayed while making the request.

javascriptTooltip boolean [false Indicates whether or not to use JavaScript
to generate tooltips.

listenTopics String The topics that will trigger the remote
call.

loadingText String |Loading... |The text to display while content is being
fetched.

method String The method attribute.

notifyTopics String Comma delimited topics to be published
before and after the request and upon an
error occurring.

parseContent boolean |true Whether or not to parse the returned
content for widgets.

separateScripts boolean [true Whether or not to run the scriptin a

Table 27.4. submit tag attributes

Name Data Default Description
Type Value

separate scope that is unique for each
tag.

showErrorTransportText boolean (true Whether or not errors will be shown.

showlLoadingText boolean [false Whether or not loading text will be
shown on targets

src String The image source for a submit button of
type image.

targets String Comma delimited identifiers of the
elements whose content will be updated

transport String |[XMLHttp |The transport for making the request

Transport

type String |input The type of the submit button. Possible
values are input, image, and button.

validate boolean [false Whether or not AJAX validation should be

performed

The submit tag can be nested within the form it submits or stand independently. This

submit tag is nested within a form.

<s:div id="divl">

<s:form acti on="Server Ti ne. acti on">
targets="div1l"/>

<s:submt
</s:fornp
</s:div>

And this is a submit tag outside the form it submits. In this case, you use the formld
attribute to specify the form to submit.

<s:formid="Ilogi nFornm action="...">
<s:textfield nane="user Nane" | abel ="User Name"/>
<s: password nane="password" | abel =" Password"/ >
</s:forme
<sx:submit form d="IoginForn'/>

The bind Tag

The bind tag is used to attach an event with an event handler or to associate an object's
event with a topic so that an element, even a non-AJAX component, can publish a topic.

The attributes that can appear inside a bind tag are presented in Table 27.5

Table 27.5. bind tag attributes

Name Data Default Description
Type Value
afterNotifyTopics String Comma delimited topics to be published
after the request, if the request is
successful.
ajaxAfterValidation boolean [false Indicates whether or not to make an

asynchronous request if validation
succeeds. This attribute will only take
effect if the validate attribute is set to
true.

beforeNotifyTopics String Comma delimited topics to be published
before the request.

errorNotifyTopics String Comma delimited topics to be published
after the request, if the request fails.

errorText String The text to be displayed if the request
fails.

Table 27.5. bind tag attributes

Name Data Default Description
Type Value

events String Comma delimited event names to attach
to

executeScripts boolean [false Indicates whether or not JavaScript code
in the fetched content should be
executed.

formFilter String The function to be used to filter the form
fields.

formld String The identifier of the form whose fields
will be passed as request parameters.

handler String The JavaScript function that will make the
request.

highlightColor String The color to highlight the elements
specified in the targets attribute.

highlightDuration integer (2000 The duration in milliseconds the elements
specified in the targets attribute will be
highlighted. This attribute will only take
effect if the hightlightColor attribute has a
value.

href String The URL to call to fetch the content.

indicator String The identifier of the element that will be
displayed while making the request.

listenTopics String The topics that will trigger the remote

call.

Table 27.5. bind tag attributes

Name Data Default Description
Type Value

loadingText String |Loading... |The text to display while content is being
fetched.

notifyTopics String Comma delimited topics to be published
before and after the request and upon an
error occurring.

separateScripts boolean [true Whether or not to run the scriptin a
separate scope that is unique for each
tag.

showErrorTransportText boolean (true Whether or not errors will be shown.

showloadingText boolean [false Whether or not loading text will be
shown on targets

sources String Comma delimited identifiers of the
elements to attach to

targets String Comma delimited identifiers of the
elements whose content will be updated

transport String |XMLHttp |The transport for making the request

Transport
validate boolean [false Whether or not AJAX validation should be

performed

The bind tag also inherits the common attributes specified in Chapter 5, "Form Tags."

As an example, the following bind tag attaches the b1 submit button's onclick event with
an AJAX call to MyAction.action and the response to the div element divl.

<sx: bi nd i d="bi nder"
href ="M/Action. action"
sources="b1"
event s="oncl i ck"
targets="divl" />

<s:submit id="bl" thene="sinple" type="submt" />

The following bind tag causes the onclick event of the b2 button to publish the myTopic
topic.

<i nput id="b2" type="button">
<sx: bi nd
i d="Dbi nder"
bef oreNot i fyTopi cs="mnmyTopi c"
sour ces="h2"
events="onclick"/>

The datetimepicker Tag

The datetimepicker tag renders either a date picker or a time picker. Figure 27.1
shows a date picker (on the left) and a time picker (on the right).

Figure 27.1. A date picker and a time picker

zr|za 29.3n|31
3|48
10 11|1z|13 14 |15 |16

22 | Z]

2425 26 |27 |28 | zsi1

1r 1H|1! (20 |21 |

2007 (2008 2009

The list of attributes of the datetimepicker tag is given in Table 27.6.

Table 27.6. datetimepicker tag attributes

Name Data Default Description
Type Value

adjustWeeks boolean [false Whether or not to adjust the number of rows in
each month. If this attribute value is false, there
are always six rows in each month.

dayWidth String \narrow |Determines the day names in the header. Possible
values are narrow, abbr, and wide.

displayFormat String The date and time pattern according to Unicode
Technical Standard #35

displayWeeks integer 6 The number of weeks to display

endDate Date 2941-10- [The last available date

12

formatLength String |short The formatting type for the display. Possible
values are short, medium, long, and full.

javascriptTooltip |boolean [false Indicates whether or not to use JavaScript to
generate tooltips.

language String The language to use. The default language is the
browser's default language.

startDate Date 1492-10- [The first available date

12

staticDisplay boolean [false Whether or not only the dates in the current
month can be viewed and selected

toggleDuration |integer |100 The toggle duration in milliseconds

toggleType String |plain The toggle type for the dropdown. Possible values

Table 27.6. datetimepicker tag attributes

Name Data Default Description
Type Value

are plain, wipe, explode, and fade.

type String |date Whether this widget will be rendered as a date
picker or a time picker. Allowed values are date
and time.

valueNotifyTopics|String Comma delimited topics that will be published
when a value is selected.

weekStartsOn integer |0 The first day of the week. 0 is Sunday and 6 is

Saturday.

The datetimepicker tag inherits the common specified in Chapter 5, "Form Tags."

The acceptable date and time patterns for the displayFormat attribute can be found here:

http://wwv. uni code. org/ reports/tr35/tr35-4. htnl #Dat e_For mat _Patt erns

The adjustWeeks attribute plays an important role in the display. If the value of
adjustWeeks is false, there are always six rows for each month. For example, in Figure

27 .2 the picker on the left is displaying January 2008 and has its adjustWeeks attribute
set to false. The one on the right, on the other hand, has its adjustWeeks attribute set to
true and, as a result, the second week of February 2008 is not shown.

Figure 27.2. Different values of adjustWeeks

3u'31'1|zi:i4'5 3u'31'1|zi:i4'5

6|7 s|5|1u;11,1z 6|7 =|5|1n;11,1z
|

[l [| [l [|
13!14i15%15 '"'g'lﬂl'l! 13!14i15%"|5 '"'g'lﬂl'l!

[I
[|
20'21i22i2!'24=25 26 20'21i22i23'24=25 26

27 |28 |28 |30 31| 1 | 2 27 28|28 (30 |31 |1 | 2
1{a|5|6|7[8|s 2007 2008 2009
2007 2008 2009

For instance, the following is an example of the datetimepicker tag.

<sx: dat eti nmepi cker
adj ust Weeks="true"
di spl ayFor mat =" MM dd/ yyyy"
t oggl eType="expl ode" />

You can view the example by directing your browser to this URL.

http://1 ocal host: 8080/ app27a/ Dat eTi nePi cker. acti on

The tabbedpanel Tag

The tabbedpanel tag renders a tabbed panel like the one in Figure 27.3. It can contain
as many panels as you want and each panel may be closable.

Figure 27.3. A tabbed panel

[Server Time | Closahle H-'|
"ed Dec 12 647750 EST 2007

The attributes of the tabbedpanel tag are shown in Table 27.7.

Table 27.7. tabbedpanel tag attributes

Name Data Default Description
Type Value
afterNotifyTopics String Comma delimited topics to be published
after the request, if the request is
successful.
ajaxAfterValidation boolean [false Indicates whether or not to make an

asynchronous request if validation
succeeds. This attribute will only take
effect if the validate attribute is set to
true.

beforeNotifyTopics String Comma delimited topics to be published
before the request.

errorNotifyTopics String Comma delimited topics to be published
after the request, if the request fails.

Table 27.7. tabbedpanel tag attributes

Name Data Default Description
Type Value

errorText String The text to be displayed if the request
fails.

executeScripts boolean [false Indicates whether or not JavaScript code
in the fetched content should be
executed.

formFilter String The function to be used to filter the form
fields.

formld String The identifier of the form whose fields
will be passed as request parameters.

handler String The JavaScript function that will make the
request.

highlightColor String The color to highlight the elements
specified in the targets attribute.

highlightDuration integer (2000 The duration in milliseconds the elements
specified in the targets attribute will be
highlighted. This attribute will only take
effect if the hightlightColor attribute has a
value.

href String The URL to call to fetch the content.

indicator String The identifier of the element that will be
displayed while making the request.

javascriptTooltip boolean [false Indicates whether or not to use JavaScript
to generate tooltips.

Table 27.7. tabbedpanel tag attributes

Name Data Default Description
Type Value

listenTopics String The topics that will trigger the remote
call.

loadingText String |Loading... |The text to display while content is being
fetched.

notifyTopics String Comma delimited topics to be published
before and after the request and upon an
error occurring.

parseContent boolean [true Whether or not to parse the returned
content for widgets.

separateScripts boolean [true Whether or not to run the scriptin a
separate scope that is unique for each
tag.

showErrorTransportText boolean [true Whether or not errors will be shown.

showloadingText boolean [false Whether or not loading text will be
shown on targets

targets String Comma delimited identifiers of the
elements whose content will be updated

transport String | XMLHttp |The transport for making the request

Transport
validate boolean [false Whether or not AJAX validation should be

performed

The tabbedpanel tag also inherits the common attributes specified in Chapter 5, "Form
Tags." In addition, the id attribute is mandatory for tabbedpanel.

For example, the following tabbedpanel tag contains two div elements as its panels.

<sX:tabbedpanel id="test">
<sx:div | abel ="Server Tinme" cssStyl e="hei ght:200px"
hr ef =" Server Ti ne. acti on">
Server Tine
</ sx: div>
<sx:div | abel ="Cl osabl e" cl osabl e="true">
Thi s pane can be cl osed.
</ sx: div>
</ sx: t abbedpanel >

To view the example in app27a, use this URL:

http://1 ocal host: 8080/ app27a/ TabbedPanel . acti on

The textarea Tag

The textarea tag renders a sophisticated text editor. Figure 27.4 shows the textarea
tag used in a blog application.

Figure 27.4. The textarea tag
[View full size image]

[teese]

Hessage: :m | BIBI US| it-@a@=z===
Improvement to Drag and Drop

Drag and drop (DD} is a feature that r fgiis to pique any Swing begin
tutorial on the feature as well as presants the latest enhancement found i

There are three secthions in this section. The first provides you with a bnef

few classes that yvou need to have knowledge of to understand the third =
improvement of DnD brought in with Java 6.

DnD Basic

Swing's Dnl is surprisingly easy, allowing you to transfer data between tv
component and a native application. Many Swing components provide buill
by passing true to a componant's setDragEnabled method, such as

coRponent. sechraginabled [toue) ;

In addition to the common attributes discussed in Chapter 5, "Form Tags," the textarea
tag adds three more attributes, which are given in Table 27.8.

Table 27.8. textarea tag attributes
Name |Data Type Default Value Description
cols linteger The cols attribute of the rendered textarea
rows |integer The rows attribute of the rendered textarea
wrap boolean [false The wrap attribute of the rendered textarea

Test the example in app27a by directing your browser here:

http://1 ocal host: 8080/ app27al/ Text Area. acti on

The autocompleter Tag
The autocompleter tag renders a combo box with an auto-complete feature. Its attributes

are given in Table 27.9. The options for an autocompleter can be assigned to its list
attribute or sent dynamically as a JSON object.

Table 27.9. autocompleter tag attributes

Name Data Default Value Description
Type
afterNotifyTopics [String Comma delimited topics to be published
after the request, if the request is
successful.
autoComplete
beforeNotifyTopics [String Comma delimited topics to be published

before the request.

Table 27.9. autocompleter tag attributes

Name Data Default Value Description
Type
dataFieldName String |value in the The name of the field in the returned
name attribute JSON object that contains the data array

delay integer 1100 The delay in milliseconds before making
the search

dropdownHeight |integer |120 The height of the dropdown in pixels

dropdownWidth integer |the same as the|The width of the dropdown in pixels

textbox

emptyOption boolean [false Whether or not to insert an empty option

errorNotifyTopics [String Comma delimited topics to be published
after the request, if the request fails.

forceValidOption |boolean [false Whether or not only an included option
can be selected

formFilter String The function to be used to filter the form
fields.

formld String The identifier of the form whose fields
will be passed as request parameters.

headerKey String The key for the first item in the list

headerValue String The value for the first item in the list

href String The URL to call to fetch the content.

iconPath String Path to the icon used for the dropdown

indicator String The identifier of the element that will be

Table 27.9. autocompleter tag attributes

Name Data Default Value Description
Type

displayed while making the request.

javascriptTooltip boolean [false Indicates whether or not to use
JavaScript to generate tooltips.

keyName String The property to which the selected key
will be assigned.

list String An iterable source to populate from

listKey String The property of the object in the list that
will supply the option values

listValue String The property of the object in the list that
will supply the option labels

listenTopics String The topics that will trigger the remote
call.

loadMinimumCount|integer |3 The minimum number of characters that
must be entered to the textbox before
options will be loaded

loadOnTextChange |boolean true Whether or not to reload options every
time a character is entered to the texbox

maxlength integer Corresponds to the HTML maxlength
attribute

notifyTopics String Comma delimited topics to be published
before and after the request and upon an
error occurring.

Table 27.9. autocompleter tag attributes

Name Data Default Value Description
Type

preload boolean true Whether or not to reload options when
the page loads

resultsLimit integer 30 The maximum number of options. -1
indicates no limit.

searchType String |startstring Search type, possible values are
startstring, startword, and substring.

showDownArrow |boolean |true Whether or not to show the down arrow

transport String XMLHttp The transport for making the request

Transport
valueNotifyTopics [String Comma delimited topics that will be

published when a value is selected

Note

For more information on JSON, visit http://json.org

Like other form tags, the autocompleter tag should be nested within a form. When the
user submits the form, two key/value pairs associated with the autocompleter will be sent
as request parameters. The key for the first request parameter is the value of the
autocompleter tag's name attribute. The key for the second request parameter is by
default the value of the name attribute plus the suffix Key. That is, if the value of the
name attribute is searchWord, the key of the second request parameter will be
searchWordKey. You can override the second key name using the keyName attribute.
The keyName attribute is the one that should be mapped with an action property. Its value
will be the value of the selected option.

The attributes for autocompleter are given in Table 27.9.

The autocompleter tag also inherits the common specified in Chapter 5, "Form Tags."

Three examples illustrate the use of autocompleter. All examples use the
AutoCompleterSupport class in Listing 27.5.

Listing 27.5. The AutoCompleterSupport class

package app27a;

i mport java.util.ArraylList;

i mport java.util.List;

i mport com opensynphony. xwor k2. Acti onSupport;

public class AutoConpl et er Support extends ActionSupport {

private static List<String> carMakes = new ArrayLi st<String>();
private String car MakeKey;
static {

car Makes. add(" Acura");

car Makes. add(" Audi ") ;

car Makes. add(" BMN) ;

car Makes. add(" Chrysler");

car Makes. add(" Ford");

car Makes. add("GW') ;

car Makes. add(" Honda") ;

car Makes. add(" Hyundai ") ;

car Makes. add("Infiniti");

car Makes. add("Ki a") ;

car Makes. add(" Lexus");

car Makes. add(" Toyot a") ;

}
public List<String> getCarMakes() {
return car Makes;

}

public String get Car MakeKey() {
return car MakeKey;

}

public void set Car MakeKey(String car MakeKey) {
thi s. car MakeKey = car MakeKey;
}

There are two properties in the AutoCompleterSupport class, carMakes and
carMakeKey. The carMakes property returns a list of car makes and is used to populate
an autocompleter. The carMakeKey property is used to receive user selection.

Example 1

This example shows how you can populate an autocompleter by assigning a List to its list
attribute. The JSP in Listing 27.6 shows the autocompleter tag.

Listing 27.6. The AutoCompleterl.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<v@taglib prefix="sx" uri="/struts-dojo-tags" %

<htm >

<head>

<title>Auto Conpleter</title>

<sx: head/ >

</ head>

<body>

<s:form acti on="ShowSel ecti on" theme="sinple">
<sx:aut oconpl et er name="car Make" |ist="car Vakes"/>
<s:subnit/>

</s:fornp

</ body>

</htnm >

You can test this example by directing your browser to this URL:

http://1 ocal host: 8080/ app27al/ Aut oConpl eter 1. action

Figure 27.5 shows the autocompleter tag rendered.

Figure 27.5. The car make list

| ¥
Acura i

Audi

Bl
Chrysler

Ford

GM o

When the containing form is submitted, the selected option will be sent as the request
parameter carMakeKey.

Example 2

This example shows how to populate an autocompleter by assigning a JSON object. The
location of the server that returns the object must be assigned to its href attribute and, for
security reasons, it must be the same location as the origin of the page.

The AutoCompleter2.jsp page in Listing 27.7 shows the tag.

Listing 27.7. The AutoCompleter2.jsp page

<v@taglib prefix="s" uri="/struts-tags" %

<v@taglib prefix="sx" uri="/struts-dojo-tags" %

<htm >

<head>

<title>Auto Conpleter</title>

<sx: head/ >

</ head>

<body>

<s:form acti on="ShowSel ecti on" theme="sinple">
<sx: aut oconpl et er nane="car Make" href="Car MakesAsJSONL. acti on"/>
<s:submit/>

</s:formp

</ body>

</htm >

Note that the href attribute of the autocompleter tag is assigned
CarMakesAsJSON1.action. This action forwards to the CarMakesAsJSONL1.jsp page in

Listing 27.8 and sends a JSON object in the following format:

[
['key-1","value-1'],
['key-2',"value-2'],

["key-n","value-n']

Listing 27.8. CarMakesAsJSONL1.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
[
<s:iterator val ue="car Makes" status="status">
['<s:property/>','<s:property/>']
<s:if test="Il#status.last"> </s:if>
</s:iterator>

]

Test this example by directing your browser here.

http://1 ocal host: 8080/ app27a/ Aut oConpl et er 2. acti on

Example 3

This example is similar to Example 2 and the JSP is shown in Listing 27.9.

Listing 27.9. The AutoCompleter3.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
<v@taglib prefix="sx" uri="/struts-dojo-tags" %
<htm >
<head>
<title>Auto Conpleter</title>
<sx: head/ >
</ head>
<body>
<s:form acti on="ShowSel ecti on" theme="sinple">
<sx: aut oconpl et er
nanme="car Make"
dat aFi el dNane="nmake"
hr ef =" Car MakesAsJSON2. acti on"/ >
<s:submt/>
</s:formp
</ body>
</htm >

The difference between this one and Example 2 is the format of the JSON object. For this
example, the JSON object contains a property (make) that contains the list of options to
display. The format of the JSON object is as follows.

{

"make" : {
"key-1':"val ue-1'",
"key-2':"'val ue-2',
"key-n':"val ue-n'

}

}

You use the dataFieldName attribute to tell the autocompleter the name of the JSON
object's property that contains the options.

Listing 27.10 shows the JSP that formats the options as a JSON object.

Listing 27.10. CarMakesAsJSONZ2.jsp page

<v@taglib prefix="s" uri="/struts-tags" %
{
"make" {
<s:iterator val ue="car Makes" status="status">
'<s:property/>':'<s:property/>'
<s:if test="Il#status.last"> </s:if>
</s:iterator>
}
}

To test this example, direct your browser to this URL.

http://1 ocal host: 8080/ app27al/ Aut oConpl et er 3. acti on

The tree and treenode Tags

The tree tag renders a Dojo tree. It may contain treenode tags or it can obtain children
dynamically. The attributes of the tree tag are given in Table 27.10 and those of the
treenode tag in Table 27.11.

Table 27.10. tree tag attributes

Data Default
Name Type Value Description

blanklconSrc String The source for the blank icon
childCollectionProperty String The name of the property that returns a

collection of child nodes
collapsedNotifyTopics [String Comma separated topics to be published

when a node is collapsed
errorNotifyTopics String Comma delimited topics to be published

after the request, if the request fails.
expandlconSrcMinus |String The source for the expand icon
expandlconSrcPlus String The source for the expand icon

Table 27.10. tree tag attributes

Data Default
Name Type Value Description

expandedNotifyTopics |String Comma delimited topics to be published
when a node is expanded

gridiconSrcC String Image source for under child item child icons

gridlconSrcL String Image source for the last child grid

gridlconSrcP String Image source for under parent item child
icons

gridlconSrcV String Image source for vertical line

gridlconSrcX String Image source for grid for sole root item

gridlconSrcY String Image source for grid for last root item

href String The URL to call to fetch the content.

iconHeight String |18px The icon height

iconWidth String |19px The icon width

javascriptTooltip boolean [false Indicates whether or not to use JavaScript to
generate tooltips.

nodeldProperty The name of the property whose value is to
be used as the node id

nodeTitleProperty The name of the property whose value is to
be used as the node title

openTemplate String The template to use for opening the

rendered HTML

Table 27.10. tree tag attributes

Data Default
Name Type Value Description

rootNode String The name of the property whose value is to
be used as the root

selectedNotifyTopics |String Comma delimited topics to be published
when a node is selected. An object with a
property named node will be passed to the
subscribers.

showGrid boolean true Whether or not to show the grid

showRootGrid boolean true The showRootGrid property

toggle String |fade The toggle property. Possible values are fade
or explode.

toggleDuration integer (150 Toggle duration in milliseconds

Table 27.11. treenode tag attributes

Name Data Default Description
Type Value
javascriptTooltip|boolean [false Indicates whether or not to use JavaScript to
generate tooltips.
openTemplate [String The template to use for opening the rendered
HTML

The tree tag also inherits the common attributes specified in Chapter 5, "Form Tags."

Example 1

This example shows how to build a tree statically, by adding all nodes to the page. This is a
simple example that is pretty much self-explanatory. The Treel.jsp page in Listing
27.11 shows the tree and treenode tags used for the tree.

Listing 27.11. The Treel.jsp page

<U@taglib prefix="sx" uri="/struts-dojo-tags" %
<htm >
<head>
<title>Tree</title>
<sx: head debug="true"/>
</ head>
<body>
<sx:tree id="root" | abel =" Root">
<sx:treenode id="F1" | abel ="F1" />
<sx:treenode id="F2" | abel ="F2">
<sx:treenode id="F2a" |abel ="F2a" />
<sx:treenode id="F2b" |abel ="F2b" />
</ sx:treenode>
<sx:treenode id="F3" | abel ="F3" />
</sx:tree>
</ body>
</htm >

To test the example, direct your browser to this URL.

http://1 ocal host: 8080/ app27al/ Treel. acti on

You'll see the tree like the one in Figure 27.6.

Figure 27.6. A static tree

[=F Root
F1
F2
F2a
F2b
F3

Example 2

This example shows how you can construct a tree dynamically. At minimum, the tree tag
must have the following attributes: rootNode, nodeTitleProperty, nodeldProperty,

childCollectionProperty. In addition, you must also create a model object to back up your
view.

The TreeZ2 action, the action for this example, is associated with the TreeSupport action

class in Listing 27.12. The class provides the rootNode property that maps to the
rootNode attribute of the tree tag.

Listing 27.12. TreeSupport action class

package app27a;
i mport com opensynphony. xwor k2. Acti onSupport;
public class TreeSupport extends ActionSupport {
publ i c Node get Root Node() {
return new Node("root", "ROOT");
}

In this example, a tree node is represented by a Node object. The Node class is shown in

Listing 27.13. It is a simple JavaBean class with three properties, id, title, and
children. The children property returns the children for the tree node. A static counter is
used so that it does not loop indefinitely.

Listing 27.13. The Node class

package app27a;

i mport java.util.Arraylist;

i mport java.util.List;

public class Node {
private String id;
private String title;
public Node() {

}

public Node(String id, String title) {
this.id = id;
this.title = title;

}

/1l getters and setters not shown

public static int counter = 1;
public List getChildren() {
Li st <Node> children = new ArrayList();
if (counter < 5) {
Node child = new Node("node" + counter,
"Generation " + counter);
children.add(child);
count er ++;

}

return children;

The Tree2.jsp in Listing 27.14 shows the JSP with a tree tag used to construct a tree
dynamically. The tree tag also has its selectedNotifyTopics assigned a nodeSelected

topic to indicate to Dojo that selecting a node must publish the topic. A JavaScript function
subscribes to the topic.

Listing 27.14. The Tree2.jsp page

<v@taglib prefix="sx" uri="/struts-dojo-tags" %
<htn >
<head>
<title>Tree</title>
<sx: head debug="true"/>
<script type="text/javascript">
doj 0. event .t opi c. subscri be("nodeSel ected", function(source) {
var sel ect edNode = source. node;
alert("You selected node " + selectedNode.title);
1)
</script>
</ head>
<body>
<sx:tree root Node="r oot Node"
nodeTi tl eProperty="title"
nodel dProperty="id"
chil dCol | ecti onProperty="chil dren"
sel ect edNot i f yTopi cs="nodeSel ect ed"
>
</sx:tree>
</ body>
</htm >

The JavaScript function in Tree2.jsp will be executed every time a node is selected. It will
receive a JavaScript object that has a node property. In the example, the function simply
prints the node title.

To test the example, direct your browser here.

http://1ocal host: 8080/ app27al/ Tree2. acti on

The constructed tree is shown in Figure 27.7. Click a node and you'll see an alert box
displaying the node title.

Figure 27.7. A dynamic tree

[F-ROOT
[=}- Generation 1
[=1- Generation 2
[~ Generation 3
L Generation 4

Summary

Struts comes with a plug-in that provides custom tags to construct AJAX components. This
plug-in, the Struts Dojo plug-in, is part of Struts 2.1 and later and is based on Dojo 0.4.

This chapter showed how you can use the tags.

Appendix A. Struts Configuration

The two main configuration files in a Struts application are the struts.xml and the
struts.properties files. The former registers interceptors and result types as well as maps
action with action classes and results. The latter specifies other aspects of the application,
such as the default theme and whether or not the application is in development mode. This
appendix is a complete guide to writing the two configuration files.

The struts.xml File

A struts.xml file always contains this DOCTYPE element, which indicates that it complies
with the type definitions specified in the struts-2.0.dtd file.

<! DOCTYPE struts PUBLIC
"-// Apache Software Foundation//DTD Struts Configuration 2.0//EN'
"http://struts.apache. org/dtds/struts-2.0.dtd">

The root element of a struts.xml file is struts. This section explains elements that may
appear under the struts element, either directly or indirectly. The following elements can be
direct sub-elements of <struts>.

package
include
bean
constant

The action Element

An action element is nested within a package element and represents an action. Its
attributes are listed in Table A.1l. Note that the name attribute is required.

Table A.1. action element attributes

Attribute Description

name* The action name.

class The action class associated with this action.

method [The action method.

converter|The converter for this action.

An action may or may not specify an action class. Therefore, an action element may be as
simple as this.

<action name="My/Action">

An action that does not specify an action class will be given an instance of the default action
class.

If an action has a non-default action class, however, you must specify the fully class name
using the class attribute. In addition, you must also specify the name of the action method,
which is the method in the action class that will be executed when the action is invoked.
Here is an example.

<action nanme="Address_save" class="app. Address" net hod="save">

If the class attribute is present but the method attribute is not, execute is assumed for
the method name. In other words, the following action elements mean the same thing.

<action nanme="Enpl oyee_save" cl ass="app. Enpl oyee" net hod="execute">

<action nanme="Enpl oyee_save" cl ass="app. Enpl oyee">

The bean Element

Use this element to instruct Struts either to create a bean or have a bean's static methods
available for use by the application. The attributes that may appear in this element are

listed in Table A.2. Only class, indicated by an asterisk, is required.

Table A.2. bean element attributes

Attribute Description

class* The Java class to be instantiated or whose static methods to be made
available.

type The primary interface the Java class implements.

name A unique name for referring to this bean.

scope The bean scope. Allowable values are default, singleton, request, session, and
thread.

Table A.2. bean element attributes

Attribute Description

static Indicates whether or not to inject static methods.

optional |Indicates whether or not the bean is optional.

The following is an example of <bean=.

<bean nane="uni queBean" type="M/lnterface" class="MHBeanC ass"/ >

The constant Element

The constant element is used to override a value in the default.properties file. By using a
constant element, you may not need to create a struts.properties file. The attributes for

this element are given in Table A.3. Both the name and value attributes are required.

Table A.3. constant element attributes

Attribute Description
name* The name of the constant.
value* The value of the constant.

For example, the struts.devMode setting determines whether or not the Struts application
is in development mode. By default, the value is false, meaning the application is not in
development mode. The following constant element sets struts.devMode to true.

<constant nane="struts.devhMbde" val ue="true"/>

The default-action-ref Element

This element must appear under a package element and specifies the default action that
will be invoked if no matching for a URI is found for that package. It has a name attribute
that specifies the default action. For example, this default-action-ref element indicates
that the Main action should be invoked for any URI with no matching action.

<def aul t-action-ref nanme="Min"/>

The default-interceptor-ref Element

This element must appear under a package element and specifies the default interceptor or
interceptor stack to be used for an action in that package that does not specify any
interceptor. The name attribute is used to specify an interceptor or interceptor stack. For
example, the struts-default package in the struts-default.xml file defines the following
default-interceptor-ref element.

<default-interceptor-ref nane="defaultStack"/>

The exception-mapping Element

An exception-mapping element must appear under an action element or the global-
exception-mappings element. It allows you to catch any exception you don't catch in the
action class associated with the action. The attributes of the exception-mapping element are

shown in Table A.4.

Table A.4. exception-mapping element attributes

Attribute Description

name The name for this mapping.

exception*|Specifies the exception type to be caught.

result* Specifies a result that will be executed if an exception is caught. The result
may be in the same action or in the global-results element.

You can nest one or more exception-mapping elements under your action declaration. For
example, the following exception-mapping element catches all exceptions thrown by the
User_save action and executes the error result.

<action nanme="User _save" class="...">
<exception-mappi ng excepti on="java. | ang. Excepti on"
result="error"/>
<result nane="error">/jsp/Error.jsp</result>
<resul t >/ j sp/ Thanks. jsp</result>
</ action>

The global-exception-mappings Element

A global-exception-mappings element must appear under a package element and allows
you to declare exception-mappings elements to catch exceptions not caught in an action
class or by using a class-level exception-mapping element. Any exception-mapping
declared under the global-exception-mappings element must refer to a result in the
global-results element. Here is an example of global-exception-mappings.

<gl obal -resul t s>
<result name="error">/jsp/Error.jsp</result>
<result nanme="sql Error">/jsp/ SQLError.jsp</result>
</ gl obal -resul t s>
<gl obal - excepti on- mappi ngs>
<excepti on- mappi ng excepti on="java. sql . SQLExcepti on"
result="sql Error"/>
<excepti on-mappi ng excepti on="j ava. | ang. Excepti on"
result="error"/>
</ gl obal - excepti on- mappi ngs>

The Exception interceptor handles all exceptions caught. For each exception caught, the
interceptor adds these two objects to the Value Stack.

e exception, that represents the Exception object thrown
e exceptionStack, that contains the value from the stack trace

See Chapter 3, "Actions and Results" to learn how to handle these objects.
The global-results Element

A global-results element must appear under a package element and specifies global
results that will be executed if an action cannot find a result locally. For example, the
following global-results element specifies two result elements.

<gl obal -resul t s>
<result name="error">/jsp/Error.jsp</result>
<result nanme="sql Error">/jsp/ SQLError.jsp</result>
</ gl obal -resul t s>

The include Element

A large application may have many packages. In order to make the struts.xml file easier to
manage for a large application, you can divide it into smaller files and use include elements
to reference the files. Each file would ideally include a package or related packages and is
referred to by using the include element’s file attribute. An include element must appear
directly under <struts>.

For example, the following are examples of include elements.

<struts>
<include file="nodule-1.xm" />
<include file="nodule-2.xm" />

<include file="nodule-n.xm" />
</struts>

Each module.xml file would have the same DOCTYPE element and a struts root element.
Here is an example:

<?xm version="1.0" encodi ng="UTF-8"?>

<I DOCTYPE struts PUBLIC
"-// Apache Software Foundation//DTD Struts Configuration 2.0//EN'
"http://struts. apache. org/dtds/struts-2.0.dtd">

<l-- file nodule-n.xn -->
<struts>
<package name="test" extends="struts-default">
<action nane="Test1" class="test.Test1Action">
<result>/jsp/Resultl.jsp</result>
</ acti on>
<action nane="Test?2" class="test. Test2Action">
<resul t>/aj ax/ Resul t 2. j sp</resul t >
</ action>
</ package>
</struts>

The interceptor Element

The interceptor element must appear under an interceptors element. An interceptor
element registers an interceptor for the package under which the interceptors element is

declared. The attributes for this element are given in Table A.5. Both attributes are
required.

Table A.5. interceptor element attributes

Attribute Description

name* |The name to refer to the interceptor.

class* [The Java class for this interceptor.

For instance, the following interceptor element registers the File Upload interceptor.

<interceptor nane="fil eUpl oad"
cl ass="org. apache. struts.interceptor.Fil eUpl oadl nterceptor"/>

The interceptor-ref Element

This element is used to reference a registered interceptor and can appear either under an
interceptor-stack element or an action element. If it appears under an interceptor-
stack element, the interceptor-ref element specifies an interceptor that will become part
of the interceptor stack. If it appears under an action element, it specifies an interceptor
that will be used to process the action.

You use its name attribute to refer to a registered interceptor. For instance, the following
configuration registers four interceptors and applies them to the Product_save action.

<package nanme="nmai n" extends="struts-defaul t">
<i nterceptors>

<i nterceptor nane="alias" class="..."/>

<i nterceptor nane="i18n" class="..."/>

<i nterceptor name="validation"” class="..."/>
<i nterceptor nane="|ogger" class="..."/>

</interceptors>

<action nane="Product_save" class="...">
<interceptor-ref nane="alias"/>
<interceptor-ref nane="i1l8n"/>
<interceptor-ref nane="validation"/>
<i nterceptor-ref nane="|ogger"/>
<result name="input">/jsp/Product.jsp</result>
<resul t>/jsp/ProductDetails.jsp</result>

</ action>

</ package>

The interceptor-stack Element

With most Struts application having multiple action elements, repeating the list of
interceptors for each action can be a daunting task. In order to alleviate this problem,
Struts allows you to create interceptor stacks that group interceptors. Instead of referencing
interceptors from within each action element, you can reference the interceptor stack
instead.

For instance, six interceptors are often used in the following orders: exception,
servletConfig, prepare, checkbox, params, and conversionError. Rather than
referencing them again and again in your action declarations, you can create an interceptor
stack like this:

<i nterceptor-stack nane="basi cStack">
<i nterceptor-ref nane="exception"/>
<interceptor-ref name="servlet-config"/>
<i nterceptor-ref nane="prepare"/>
<i nterceptor-ref nane="checkbox"/>
<interceptor-ref nanme="parans"/>
<i nterceptor-ref nane="conversionError"/>
</interceptor-stack>

To use these interceptors, you just need to reference the stack:

<action name="..." class="...">
<interceptor-ref nane="basicStack"/>
<result nanme="input">/jsp/Product.jsp</result>
<resul t>/jsp/ProductDetails.jsp</result>

</ action>

The interceptors Element

An interceptors element must appear directly under a package element and registers
interceptors for that package. For example, the following interceptors element registers
two interceptors, validation and logger.

<package nanme="nmi n" extends="struts-default">
<i nt er cept or s>
<i nterceptor nane="validation" class="..."/>
<i nterceptor nane="|ogger" class="..."/>
</interceptors>
</ package>

The package Element

For the sake of modularity, Struts actions are grouped into packages, which can be thought
of as modules. A struts.xml file can have one or many package elements. The attributes

for this element are given in Table A.6.

Table A.6. package element attributes

Attribute Description

name* The package name that must be unique throughout the struts.xml file.

extends |The parent package extended by this package.

namespace The namespace for this package.

Table A.6. package element attributes

Attribute Description

abstract |Indicates whether or not this is an abstract package.

A package element must specify a name attribute and its value must be unique
throughout the struts.xml file. It may also specify a nhamespace attribute. If namespace
is not present, the default value "/" will be assumed. If the namespace attribute has a non-
default value, the namespace must be added to the URI that invokes the actions in the
package. For example, the URI for invoking an action in a package with a default
namespace is this:

/ cont ext/ acti onNane. acti on

To invoke an action in a package with a non-default namespace, you need this URI:

/ cont ext / namespace/ acti onNane. acti on

A package element almost always extends the struts-default package defined in struts-
default.xml. The latter is the default configuration file included in the Struts core JAR and
defines the standard interceptors and result types. A package that extends struts-default
can use the interceptors and result types without re-registering them. The content of the
struts-default.xml file is given in the next section.

The param Element

The param element can be nested within another element such as action, result-type,
and interceptor to pass a value to the enclosing object. The param element has a name
attribute that specifies the name of the parameter. The format is as follows:

<par am nane="property">val ue</ par an»

Used within an action element, param can be used to set an action property. For example,
the following param element sets the siteld property of the action.

<action nanme="custoner" class="...">
<param nane="sitel d">cal i forni a0l</ paranp
</ action>

And the following param element sets the excludeMethod of the validation interceptor-
ref:

<interceptor-ref nane="validation">
<par am nane="excl udeMet hods" >i nput , back, cancel </ par an»
</interceptor-ref>

The result Element

A result element may appear under an action element or a global-results element. It
specifies a result for an action.

A result element corresponds to the return value of an action method. Because an action
method may return different values for different situations, an action element may have
several result elements, each of which corresponds to a possible return value of the action
method. This is to say, if a method may return "success" and "input,” you must have two

result elements. The attributes for this element are listed in Table A.7.

Table A.7. result element attributes

Attribute Description

name The result name, associated with the action method's return value.

type The registered result type associated with this result.

For instance, the following action element contains two result elements.

<action name="Product _save" class="app. Product" nethod="save">
<result nane="success" type="di spatcher">
/jsp/Confirmjsp
</result>
<result name="input" type="di spatcher">
/jsp/ Product.jsp
</result>
</ action>

The result-type Element

This element registers a result type for a package and must appear directly under a result-
types element. The attributes for this element are given in Table A.8.

Table A.8. result-type element attributes

Attribute Description

name The name to refer to this result type.

class The Java class for this result type.

default |Specifies whether or not this is the default result type for the package.

For instance, these two result-type elements register the Dispatcher and FreeMarket result
types in the struts-default package. Note that the default attribute of the first result-
type element is set to true.

<resul t-type nane="di spatcher" default="true"

cl ass="org. apache. strut s2. di spat cher. Servl et Di spat cherResul t"/ >
<resul t-type nane="freenmarker" class="org.apache.struts2.vi ews.
freemarker. Freemar ker Resul t"/ >

The result-types Element

This element groups result-type elements and must appear directly under a package
element. For example, this result-types element groups three result types.

<resul t-types>

<resul t-type nane="chain" class="..."/>
<resul t-type nane="di spatcher" class="..." default="true"/>
<result-type nane="freemarker" class="..."/>

</result-types>

The struts-default.xml File

The struts-default.xml file is the default configuration file included in the Struts core JAR
and defines the standard interceptors and result types. A package that extends struts-
default can use the interceptors and result types without re-registering them. This file is

shown in Listing A.1.

Listing A.1. The struts-default.xml file

<?xm version="1.0" encodi ng="UTF-8" ?>

<I DOCTYPE struts PUBLIC
"-// Apache Software Foundation//DID Struts Configuration 2.0//EN
"http://struts. apache. org/dtds/struts-2.0.dtd">

<struts>
<package nanme="struts-default">
<resul t-types>

<resul t-type nane="chain"

cl ass="com opensynphony. xwor k2. Acti onChai nResul t"/ >
<resul t-type nane="di spatcher"

cl ass="or g. apache. strut s2. di spat cher. Servl et Di spat cher Resul t"

default="true"/>

<resul t-type nane="freemarker"

cl ass="org. apache. struts2. vi ews. f reemar ker . Freemar ker Resul t "/ >
<resul t-type nane="httpheader"

cl ass="org. apache. strut s2. di spat cher. Ht t pHeader Resul t"/ >
<result-type nane="redirect"

cl ass="org. apache. struts2. di spat cher. Servl et Redi rect Resul t"/ >
<resul t-type nane="redirect-action"

cl ass="org. apache. strut s2. di spat cher. Servl et Acti onRedi rect Resul t"/ >
<resul t-type nane="streant

cl ass="org. apache. struts2. di spatcher. StreanResult"/ >
<resul t-type nane="vel ocity"

cl ass="org. apache. strut s2. di spatcher. Vel oci tyResul t"/ >
<result-type nane="xslt"

cl ass="org. apache. struts2.views. xslt. XSLTResul t"/ >
<resul t-type nane="pl ai ntext"

cl ass="org. apache. strut s2. di spat cher. Pl ai nText Resul t"/>

</result-types>

<i nterceptors>
<i nterceptor nane="alias"
cl ass="com opensynphony. xwor k2. i nterceptor. Ali asl nterceptor"/>
<i nterceptor nane="autow ring"

cl ass="com opensynphony. xwor k2. spri ng. i nt erceptor. Acti onAut owi ri ngl nt erceptor

ll/>
<i nt er cept or nane="chain"

cl ass="com opensynphony. xwor k2. i nt er cept or . Chai ni ngl nterceptor"/>
<i nterceptor nane="conversi onError"

cl ass="org. apache. struts2.interceptor. StrutsConversionErrorlnterceptor"/>

<i nterceptor nane="createSession"
cl ass="org. apache. struts2.interceptor. CreateSessionlnterceptor"/>
<i nterceptor nane="debuggi ng"

cl ass="org. apache. struts2.interceptor.debuggi ng. Debuggi ngl nt erceptor"/>

<interceptor nane="external-ref"

cl ass="com opensynphony. xwor k2. i nt er cept or . Ext er nal Ref er encesl nterceptor"/ >

<i nterceptor nane="execAndWait"
cl ass="org. apache. struts2.interceptor. Execut eAndWai t I nterceptor"/>
<i nterceptor nane="exception"

cl ass="com opensynphony. xwor k2. i nt er cept or. Excepti onMappi ngl nt erceptor"/ >

<interceptor nane="fil eUpl oad"
cl ass="org. apache. struts2.interceptor. Fil eUpl oadl nterceptor"/>
<i nterceptor nanme="i 18n"

cl ass="com
cl ass="com
cl ass="com
cl ass="com
cl ass="com
cl ass="com
cl ass="com
cl ass="org
class="org

cl ass="org
tor"/>

cl ass="com
cl ass="org
class="org
cl ass="com
cl ass="com
class="org
cl ass="org

class="org

opensynphony. xwor k2. i nterceptor. | 18nlnterceptor"/>
<i nterceptor nane="|ogger"
opensynphony. xwor k2. i nt er cept or. Loggi ngl nterceptor"/>
<i nterceptor nane="nodel -driven"
opensynphony. xwor k2. i nt er cept or. Model Dri venl nterceptor"/>
<i nterceptor nane="scoped-nodel -driven"
opensynphony. xwor k2. i nt er cept or. ScopedMvodel Dri venl nterceptor"/ >
<i nterceptor nane="parans"
opensynphony. xwor k2. i nt er cept or . Par anet er sl nt erceptor"/ >
<i nterceptor nane="prepare"
opensynphony. xwor k2. i nt ercept or. Preparel nterceptor"/>
<i nterceptor nane="static-parans"
opensynphony. xwor k2. i nt ercept or. St ati cPar anet ersl nterceptor"/>
<i nterceptor nane="scope"
apache. struts2.interceptor. Scopel nterceptor"/>
<i nterceptor nane="servlet-config"
apache. struts2.interceptor. Servl et Configlnterceptor"/>
<i nterceptor nane="sessi onAutow ri ng"
apache. struts2. spring.interceptor. Sessi onCont ext Aut owi ri ngl ntercep

<interceptor nane="tiner"
opensynphony. xwor k2. i nterceptor. Ti nerlnterceptor"/>
<i nterceptor nane="token"
apache. struts2.interceptor. Tokenl nterceptor"/>
<i nterceptor nane="t oken-session"
apache. struts2.interceptor. TokenSessi onStorel nterceptor"/>
<i nterceptor nane="validation"
opensynphony. xwor k2. val i dat or. Val i dati onl nterceptor”/>
<i nterceptor nanme="worKkfl ow'
opensynphony. xwor k2. i nt er cept or . Def aul t Wr kfl ow nt erceptor"/ >
<i nterceptor nane="store"
apache. struts2.interceptor. MessageStorel nterceptor"/>
<i nterceptor nane="checkbox"
apache. struts2.interceptor. Checkboxlnterceptor"/>
<i nterceptor nane="profiling"
apache. struts2.interceptor.ProfilingActivationlnterceptor"/>

<l-- Basic stack -->
<i nterceptor-stack name="basi cStack">
<i nterceptor-ref nane="exception"/>

<interceptor-ref nane="servlet-config"/>
<interceptor-ref nane="prepare"/>

<i nterceptor-ref nanme="checkbox"/>

<i nterceptor-ref name="parans"/>
<interceptor-ref name="conversionError"/>

</interceptor-stack>

<l-- Sanmple validation and workfl ow stack -->

<i nterceptor-stack name="validati onWr kf | owSt ack" >
<i nterceptor-ref nane="basicStack"/>
<interceptor-ref nane="validation"/>
<i nterceptor-ref nanme="workflow'/>

</interceptor-stack>

<l-- Sample file upload stack -->
<interceptor-stack nane="fil eUpl oadSt ack" >

<interceptor-ref nanme="fil eUpl cad"/>
<i nterceptor-ref nane="basicStack"/>
</interceptor-stack>

<l-- Sanpl e nodel -driven stack -->

<i nterceptor-stack name="nodel Dri venSt ack">
<i nterceptor-ref nane="nodel -driven"/>
<i nterceptor-ref nane="basicStack"/>

</interceptor-stack>

<I-- Sanple action chaining stack -->
<i nterceptor-stack nane="chai nStack">
<interceptor-ref name="chain"/>
<i nterceptor-ref nane="basicStack"/>
</interceptor-stack>

<l-- Sanple i18n stack -->
<i nterceptor-stack name="i 18nSt ack">
<interceptor-ref name="i1l8n"/>
<i nterceptor-ref nane="basicStack"/>
</interceptor-stack>

<I-- An exanple of the parans-prepare-parans trick. This
stack is exactly the same as the defaultStack,
except that it \includes one extra interceptor
before the prepare interceptor: the parans
i nterceptor.

This is useful for when you wish to apply
paraneters directly to an object that you wish to
| oad externally (such as a DAO or dat abase or
service layer), but can't |oad that object until at
| east the ID paraneter has been | oaded. By | oading
the parameters twi ce, you can retrieve the object
in the prepare() nmethod, allow ng the second parans
interceptor to apply the values on the object. -->
<i nterceptor-stack nane="paransPrepar eParansSt ack" >
<

<i
<
<
<
<i
<
<
<
<
<
<
<i
<

nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt ercept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef

name="exception"/ >
nane="al i as"/ >
nane="parans"/ >
nane="servl et-config"/>
nane="prepare"/ >
nane="i 18n"/ >
nane="chai n"/ >
nane="nodel -dri ven"/ >
nane="fil eUpl oad"/ >
name="checkbox"/ >
nane="stati c- parans"/ >
nane="parans"/ >
nane="conversi onError"/ >
name="val i dati on" >

<par am nane="excl udeMet hods" >
i nput, back, cancel

</ par anw

</interceptor-ref>

<

nt er cept or - r ef

nanme="wor kf | ow'>

</interceptor-stack>

<par am nane="excl udeMet hods" >
i nput, back, cancel

</ par an®

</interceptor-ref>

<l-- A conplete stack with all the commobn interceptors
in place.
General ly, this stack should be the one you use,

though it may do nore than you need. Also
ordering can be swi tched around (ex:
have your servlet-related objects applied before

prepare() is called, you' d need to nove servlet-

t he

config interceptor up.

This stack al so excludes fromthe nornal
and wor kfl ow t he net hod nanes input,
These typically are associated with
requests that should not be validated.

cancel .

back, and

-->

<i nterceptor-stack nane="def aul t St ack">

</interceptor-stack>
<l-- The conpleteStack is here for
conmpatibility for applications that stil

<i nt

<
<
<
<i
<
<
<
<i
<
<
<
<
<
<
<i
<

nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt ercept or-ref
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef
nt er cept or - r ef

nane="exception"/ >
name="al i as"/ >
nane="servl et-config"/>
nane="prepare"/ >

nane="i 18n"/ >
name="chai n"/ >
nane="debuggi ng"/ >
nane="profiling"/>
nane="scoped- nodel -dri ven"/>
nane="nodel -dri ven"/ >
nane="fil eUpl oad"/ >
name="checkbox"/ >
nane="stati c- parans"/ >
nane="parans"/ >
nane="conversi onError"/ >
name="val i dati on">

<par am nane="excl udeMet hods" >
i nput, back, cancel , br owse

</ par an

</interceptor-ref>

<

nt er cept or - r ef

nanme="wor kf | ow'>

<par am nane="excl udeMet hods" >
i nput, back, cancel , br owse

</ par an

</interceptor-ref>

backwar ds
refer

the defaultStack by the old nane -->

if you wish to

val i dati on

to

ercept or-stack nane="conpl et eSt ack" >
<i nterceptor-ref nane="defaultStack"/>

</interceptor-stack>

<I--

Sanpl e execute and wait stack.
Not e: execAndWait shoul d al ways be the *|ast*
interceptor. -->

<i nterceptor-stack nane="execut eAndWait Stack">
<interceptor-ref nane="execAndWait">
<par am nanme="excl udeMet hods" >
i nput, back, cancel
</ par an
</interceptor-ref>
<i nterceptor-ref nane="default Stack"/>
<interceptor-ref nane="execAndWait">
<par am nanme="excl udeMet hods" >
i nput, back, cancel
</ par an®
</interceptor-ref>
</interceptor-stack>
</interceptors>

<default-interceptor-ref name="defaul tStack"/>
</ package>
</struts>

The struts.properties File

You may have a struts.properties file in the WEB-INF/classes file to override configuration
settings defined in the default.properties file.

The keys and default values, if any, are explained below.

struts.i1l8n.encoding = UTF-8

Struts default encoding.

struts. obj ect Factory

The default object factory. The value must be a subclass of
com.opensymphony.xwork2.0bjectFactory. A short-hand notation, such as spring that
represents SpringObjectFactory, is supported.

struts. obj ect Factory. spring.autoWre = nane

The auto-wiring logic when using the SpringObjectFactory. Valid values are name (the
default), type, auto, and constructor.

struts. obj ect Factory. spring. useCl assCache = true

Indicates to the Struts-Spring integration module if Class instances should be cached.

struts. obj ect TypeDet er m ner

Specifies the object type determiner. The value must be an implementation of
com.opensymphony.xwork2.util.ObjectTypeDeterminer. Shorthand notations such as tiger
or notiger are supported.

struts. multipart. parser=Jakarta

Specifies the parser to handle multipart/form-data requests in file upload.
struts.multipart.saveDir

The default save directory for file upload. The default value is the directory indicated by
javax.servlet.context.tempdir.

struts.multipart. maxSi ze = 2097152

The maximum size for uploaded files.

struts.custom properties

The list of custom properties files that must be loaded.

struts. mapper. cl ass

The action mapper to handle how request URLs are mapped to and from actions. The
default value is org.apache.struts2.dispatcher.mapper.DefaultActionMapper.

struts.action. extension = action

A comma separated list of action extensions.

struts.serve.static = true

Indicates whether or not Struts should serve static content from inside its JAR. A value of
false indicates that the static content must be available at <contextPath>/struts.

struts.serve.static. browserCache = true

Indicates if the filter dispatcher should write out headers for static contents that will be
cached by web browsers. A value of true is suitable for development mode. This key will be
ignored if struts.serve.static is false.

struts. enabl e. Dynam cMet hodl nvocati on = true

Indicates if dynamic method invocation is enabled. The default value is true, but for security
reasons its value should be false. Dynamic method invocation is discussed in Chapter 2.

struts. enabl e. Sl ashesl nActi onNanes = fal se

Indicates if slashes are allowed in action names.

struts.tag. altSyntax = true

Indicates if the alternative expression evaluation syntax that requires %{ ... } is allowed.
struts. devibde = fal se

Indicates if development mode should be enabled. When the value is true, Struts will reload
the application struts.xml file, validation files, and resource bundles on every request, which
means you do not need to reload the application if any of these files changes. In addition, a
value of true will raise the level of debug or ignorable problems to errors. For example, in
development mode a form field with no matching action property will throw an exception. In

production mode, it will be ignored.

struts.ui.thene = xhtnl

The default theme.

struts.ui.tenplateDir = tenplate

The default location for templates.

struts.ui.tenplateSuffix = ftl

The default template type. Other values in addition to ftl (FreeMarker) are vm (Velocity) and
jsp (JSP).

struts. configuration.xm.rel oad=fal se

Indicates if struts.xml should be reloaded if it has been changed.

struts.velocity.configfile = velocity.properties

The default Velocity configuration file.

struts.velocity.contexts

A comma separated list of VelocityContext class names to chain to the
StrutsVelocityContext.

struts.velocity.tool boxl ocation

The location of the Velocity toolbox.

struts.url.http.port = 80

The HTTP port number to be used when building URLs.

struts.url.https.port = 443

The HTTPS port number to be used when building URLs.

struts.customi 18n.resources

The load custom default resource bundles.

struts. di spat cher. paranet er sWor karound = fal se
Indicates if workaround for applications that don't handle
HttpServietRequest.getParameterMap() should be enabled.
struts. freenmarker. manager. cl assnane

The FreeMarker Manager class to be used. It must be a child of
org.apache.struts2.views.freemarker.FreemarkerManager.

struts. xslt.nocache = fal se

Specifies if the XSLTResult class should use stylesheet caching.

struts.configuration.files = struts-default.xnl, struts-plugin.xm,struts.xm

The list of configuration files that should be loaded automatically.

struts. mapper. al waysSel ect Ful | Nanmespace=f al se

Indicates if Struts should select the namespace to be everything before the last slash.

Appendix B. The JSP Expression Language

OGNL is the expression language used with the Struts custom tags. However, there are
cases whereby the JSP Expression Language (EL) can help. For example, the JSP EL
provides shorter syntax for printing a model object than what the property tag and OGNL
offer. With the JSP EL, instead of this

<s:property val ue="serverVal ue"/ >

You can simply write this.

${server Vval ue}

In addition, there's no easy way to use Struts custom tags to print a request header. With
EL, it's easy. For instance, the following EL expression prints the value of the host header:

${ header. host }

This appendix is a tutorial on the JSP EL.

The Expression Language Syntax

One of the most important features in JSP 2.0 is the expression language (EL). Inspired by
both the ECMAScript and the XPath expression languages, the EL is designed to make it
possible and easy to author script-free JSPs, that is, pages that do not use JSP declarations,
expressions, and scriptlets.

The EL that was adopted into JSP 2.0 first appeared in the JSP Standard Tag Library (JSTL)
1.0 specification. JSP 1.2 programmers could use the language by importing the standard
libraries into their applications. JSP 2.0 developers can use the EL without JSTL. However,
JSTL also provides other libraries useful for JSP page authoring.

An EL expression starts with ${ and ends with }. The construct of an EL expression is as
follows:

${ expr essi on}

For example, to write the expression x+Yy, you use the following construct:

${x+y}

It is also common to concatenate two expressions. A sequence of expressions will be
evaluated from left to right, coerced to Strings, and concatenated. If a+b equals 8 and
c+d equals 10, the following two expressions produce 810:

${ a+b} ${ c+d}

And ${a+b}some$c+d} results in 8somelOtext.

If an EL expression is used in an attribute value of a custom tag, the expression will be
evaluated and the resulting string coerced to the attribute's expected type:

<my:tag soneAttribute="${expression}"/>

The ${ sequence of characters denotes the beginning of an EL expression. If you want to
send the literal ${ instead, you need to escape the first character: \${.

Reserved Words

The following words are reserved and must not be used as identifiers:

and eq gt true instanceof
or ne le false empty

not It ge null div mod

The [] and . Operators

The return type of an EL expression can be any type. If an EL expression results in an object
that has a property, you can use the [] or . operators to access the property. The [] and .
operators function similarly; [] is a more generalized form, but. provides a nice shortcut.

To access a scoped object's property, you use one of the following forms:

${ obj ect [" propertyNanme"]}
${ obj ect . propert yNane}

However, you can only use the first form (using the [] operator] if propertyName is not a
valid Java variable name.

For instance, the following two EL expressions can be used to access the HTTP header host
in the implicit object header.

${header["host"]}
${ header . host }

However, to access the accept-language header, you can only use the [] operator
because accept-language is not a legal Java variable name. Using the . operator to access
it will throw an exception.

If an object's property happens to return another object that in turn has a property, you can
use either [] or . to access the property of the second object. For example, the
pageContext implicit object represents the PageContext object of the current JSP. It has
the request property, which represents the HttpServietRequest object. The
HttpServietRequest object has the servletPath property. The following expressions are
equivalent and result in the value of the servietPath property of the HttpServiletRequest
object in pageContext:

${ pageContext["request"]["servletPath"]}
${ pageCont ext . request ["servl et Path"]}

${ pageCont ext . r equest . servl et Pat h}

${ pageCont ext["request"]. servl et Pat h}

The Evaluation Rule

An EL expression is evaluated from left to right. For an expression of the form expr-
a[expr-b], here is how the EL expression is evaluated:

Evaluate expr-a to get value-a.
If value-a is null, return null.
Evaluate expr-b to get value-b.
If value-b is null, return null.
If the type of value-a is java.util.Map, check whether value-b is a key in the Map.
If it is, return value-a.get(value-b). If it is not, return null.
If the type of value-a is java.util.List or if it is an array, do the following:
a. Coerce value-b to int. If coercion fails, throw an exception.
b. If value-a.get(value-b) throws an IndexOutOfBoundsException or if
Array.get(value-a, value-b) throws an

arONE

o

ArraylndexOutOfBoundsException, return null.

Otherwise, return value-a.get(value-b) if value-a is a List, or return Array.get(value-
a, value-b) if value-a is an array.

7. If value-a is not a Map, a List, or an array, value-a must be a JavaBean. In this
case, coerce value-b to String. If value-b is a readable property of value-a, call
the getter of the property and return the value from the getter method. If the getter
method throws an exception, the expression is invalid. Otherwise, the expression is
invalid.

Accessing JavaBeans

You can use either the . operator or the [] operator to access a bean’'s property. Here are
the constructs:

${ beanNane[" pr opert yNane"] }
${ beanNane. pr oper t yNane}

For example, to access the property called secret on a bean named myBean, you use the
following expression:

${ nyBean. secret}

If the property is an object that in turn has a property, you can access the property of the
second object too, again using the . or [] operator. Or, if the property is a Map, a List, or an
array, you can use the same rule explained in the preceding section to access the Map's
values or the members of the List or the element of the array.

EL Implicit Objects

From a JSP, you can use JSP scripts to access JSP implicit objects. However, from a script-
free JSP page, it is impossible to access these implicit objects. The EL allows you to access
various objects by providing a set of its own implicit objects. The EL implicit objects are

listed in Table B.1.

Table B.1. The EL Implicit Objects

Object Description
pageContext The javax.servlet.jsp.PageContext object for the current JSP.
initParam A Map containing all context initialization parameters with the

parameter names as the keys.

param A Map containing all request parameters with the parameters names
as the keys. The value for each key is the first parameter value of the
specified name. Therefore, if there are two request parameters with
the same name, only the first can be retrieved using the param object.
For accessing all parameter values that share the same name, use the
params object instead.

Table B.1. The EL Implicit Objects

Object

Description

paramValues

A Map containing all request parameters with the parameter names
as the keys. The value for each key is an array of strings containing all
the values for the specified parameter name. If the parameter has
only one value, it still returns an array having one element.

header

A Map containing the request headers with the header names as the
keys. The value for each key is the first header of the specified header
name. In other words, if a header has more than one value, only the
first value is returned. To obtain multi-value headers, use the
headerValues object instead.

headerValues

A Map containing all request headers with the header names as the
keys. The value for each key is an array of strings containing all the
values for the specified header name. If the header has only one
value, it returns a one-element array.

cookie

A Map containing all Cookie objects in the current request object. The
cookies' names are the Map's keys, and each key is mapped to a
Cookie object.

applicationScope

A Map that contains all attributes in the ServletContext object with
the attribute names as the keys.

sessionScope

A Map that contains all the attributes in the HttpSession object in
which the attribute names are the keys.

requestScope |A Map that contains all the attributes in the current
HttpServletRequest object with the attribute names as the keys.
pageScope A Map that contains all attributes with the page scope. The attributes'

names are the keys of the Map.

Each of the implicit objects is given in the following subsections.

pageContext

The pageContext object represents the current JSP's javax.sefvlet.isp.PageContext
object. It contains all the other JSP implicit objects. These implicit objects are given in

Table B.2.

Table B.2. JSP Implicit Objects
Object Type From the EL

request javax.servlet.http.HttpServletRequest

response javax.servlet.http.HttpServletResponse

out javax.servlet.jsp.JspWriter

session javax.servlet.http.HttpSession

application |javax.servlet.ServletContext

config javax.servlet.ServletConfig

pageContext|javax.servlet.jsp.PageContext

page javax.servlet.jsp.HttpJspPage

exception |java.lang.Throwable

For example, you can obtain the current ServletRequest object using one of the following
expressions:

${ pageCont ext . r equest }
${ pageCont ext ["request "]

And, the request method can be obtained using one of the following expressions:

${ pageContext["request"]["nmethod"]}
${ pageCont ext ["request "] . net hod}

${ pageCont ext . request [" nmet hod"]}

${ pageCont ext . r equest . met hod}

Request parameters are accessed more frequently than other implicit objects; therefore,
two implicit objects, param and paramValues, are provided. The param and paramValues
implicit objects are discussed in the sections "param" and "paramValues."

initParam

The initParam implicit object is used to retrieve the value of a context parameter. For
example, to access the context parameter named password, you use the following
expression:

${i ni t Par am passwor d}

or

${i ni t Par an{ " passwor d"]

param

The param implicit object is used to retrieve a request parameter. This object represents a
Map containing all the request parameters. For example, to retrieve the parameter called
userName, use one of the following:

${ par am user Nane}
${ par an{ "user Name"] }

paramValues

You use the paramValues implicit object to retrieve the values of a request parameter.
This object represents a Map containing all request parameters with the parameters’ names
as the keys. The value for each key is an array of strings containing all the values for the
specified parameter name. If the parameter has only one value, it still returns an array
having one element. For example, to obtain the first and second values of the
selectedOptions parameter, you use the following expressions:

${ par anval ues. sel ect edOpt i ons[0] }
${ par anval ues. sel ect edOpti ons[1] }

header

The header implicit object represents a Map that contains all request headers. To retrieve
a header value, you use the header name as the key. For example, to retrieve the value of
the accept-language header, use the following expression:

${ header ["accept - | anguage"]}

If the header name is a valid Java variable name, such as connection, you can also use the
. operator:

${ header . connecti on}

headerValues

The headerValues implicit object represents a Map containing all request headers with the
header names as the keys. Unlike header, however, the Map returned by the
headerValues implicit object returns an array of strings. For example, to obtain the first
value of the accept-language header, use this expression:

${ header Val ues|["accept - | anguage"][0] }

cookie

You use the cookie implicit object to retrieve a cookie. This object represents a Map
containing all cookies in the current HttpServletRequest object. For example, to retrieve
the value of a cookie called jsessionid, use the following expression:

${ cooki e. j sessi oni d. val ue}

To obtain the path value of the jsessionid cookie, use this:

${ cooki e. j sessi oni d. pat h}

applicationScope, sessionScope, requestScope, and pageScope

You use the applicationScope implicit object to obtain the value of an application-scoped
variable. For example, if you have an application-scoped variable called myVar, you use
this expression to access the attribute:

${ appl i cati onScope. nyVar}

The sessionScope, requestScope, and pageScope implicit objects are similar to
applicationScope. However, the scopes are session, request, and page, respectively.

Using Other EL Operators

In addition to the =and uoperators, the EL also provides several other operators:
arithmetic operators, relational operators, logical operators, the conditional operator, and
the empty operator. Using these operators, you can perform various operations. However,

because the aim of the EL is to facilitate the authoring of script-free JSPs, these EL
operators are of limited use, except for the conditional operator.

The EL operators are given in the following subsections.
Arithmetic Operators

There are five arithmetic operators:

Addition (+)

Subtraction (-)

Multiplication (*)

Division (/ and div)
Remainder/modulo (% and mod)

The division and remainder operators have two forms, to be consistent with XPath and
ECMAScript.

Note that an EL expression is evaluated from the highest to the lowest precedence, and
then from left to right. The following are the arithmetic operators in the decreasing lower
precedence:

* / div % mod

This means that *, /, div, %, and mod operators have the same level of precedence, and +
has the same precedence as - , but lower than the first group. Therefore, the expression

${1+2*3}

results in 7 and not 6.
Relational Operators

The following is the list of relational operators:

equality (== and eq)

non-equality (!= and ne)

greater than (= and gt)

greater than or equal to (== and ge)
less than (< and It)

less than or equal to (<= and le)

For instance, the expression ${3==4% returns false, and ${"'b""<"'d"} returns true.

Logical Operators

Here is the list of logical operators:

e AND (&& and and)
e OR(] | andor)
e NOT (! and not)

The Conditional Operator

The EL conditional operator has the following syntax:

${statenment? A B}

If statement evaluates to true, the output of the expression is A. Otherwise, the output is
B.

For example, you can use the following EL expression to test whether the HttpSession
object contains the attribute called loggedIn. If the attribute is found, the string "You have
logged in" is displayed. Otherwise, "You have not logged in" is displayed.

${ (sessi onScope. | oggedl n==nul I)? "You have not | ogged in"
"You have | ogged in"}

The empty Operator

The empty operator is used to examine whether a value is null or empty. The following is
an example of the use of the empty operator:

${emty X}

If X is null or if X is a zero-length string, the expression returns true. It also returns true if
X is an empty Map, an empty array, or an empty collection. Otherwise, it returns false.

Configuring the EL in JSP 2.0 and Later Versions

With the EL, JavaBeans, and custom tags, it is now possible to write script-free JSPs. JSP
2.0 even provides a setting to disable scripting in all JSPs. Software architects can now
enforce the writing of script-free JSPs.

On the other hand, in some circumstances you'll probably want to disable the EL in your
applications. For example, you'll want to do so if you are using a JSP 2.0-compliant
container but are not ready yet to upgrade to JSP 2.0. In this case, you can disable the
evaluation of EL expressions.

This section discusses how to enforce script-free JSPs and how to disable the EL in JSP 2.0.
Achieving Script-Free JSPs

To disable scripting elements in JSPs, you use the jsp-property-group element with two
subelements: url-pattern and scripting-invalid. The url-pattem element defines the
URL pattern to which scripting disablement will apply. Here is how you disable scripting in
all JSPs in an application:

<j sp-config>
<j sSp- property-group>
<url-pattern>*.jsp</url-pattern>
<scripting-invalid>true</scripting-invalid>
</j sp- property-group>
</jsp-config>

Note

There can be only one jsp-config element in the deployment descriptor. If you have
specified a jsp-property-group for deactivating the EL, you must write your jsp-
property-group for disabling scripting under the same jsp-config element.

Deactivating the EL Evaluation

In some circumstances, such as when you need to deploy JSP 1.2 applications in a JSP 2.0
container, you may want to deactivate EL evaluation in a JSP. When you do so, an
occurrence of the EL construct will not be evaluated as an EL expression. There are two
ways to deactivate EL evaluation in a JSP.

First, you can set the isELIgnored attribute of the page directive to true, such as in the
following:

<% page i SELI gnored="true" %

The default value of the isELIgnored attribute is false. Using the isELIgnored attribute is
recommended if you want to deactivate EL evaluation in one or a few JSPs.

Second, you can use the jsp-property-group element in the deployment descriptor. The
Jsp-property-group element is a subelement of the jsp-config element. You use jsp-
property-group to apply certain settings to a set of JSPs in the application.

To use the jsp-property-group element to deactivate the EL evaluation, you must have
two subelements: url-pattern and el-ignored. The url-pattern element specifies the URL
pattern to which the EL deactivation will apply. The el-ignored element must be set to
true.

As an example, here is how you deactivate the EL evaluation in a JSP named noEl.jsp.

<j sp-config>
<j sp- property-group>
<url - pattern>/noEl .jsp</url-pattern>
<el -ignored>true</el-ignored>
</ j sp-property-group>
</jsp-config>

You can also deactivate the EL evaluation in all the JSPs in an application by assigning *.jsp
to the url-pattern element, as in the following:

<j sp-config>
<j sp- property-group>
<url-pattern>*.jsp</url-pattern>
<el -ignored>true</el-ignored>
</ j sp-property-group>
</jsp-config>

The EL evaluation in a JSP will be deactivated if either the iseLIgnored attribute of its
page directive is set to true or its URL matches the pattern in the jsp-property-group
element whose el-ignored subelement is set to true. For example, if you set the page
directive's iseLIgnored attribute of a JSP to false but its URL matches the pattern of JSPs
whose EL evaluation must be deactivated in the deployment descriptor, the EL evaluation of
that page will be deactivated.

In addition, if you use a deployment descriptor that is compliant to Servlet 2.3 or earlier,
the EL evaluation is already disabled by default, even though you are using a JSP 2.0
container.

Summary

The EL is one of the most important features in JSP 2.0. It can help you write shorter and
more effective JSPs, as well as helping you author script-free pages. In this chapter you
have seen how to use the EL to access JavaBeans and implicit objects. Additionally, you
have seen how to use EL operators. In the last section of this chapter, you learned how to
use the application settings related to the EL in JSP 2.0 and later versions.

Appendix C. Annotations

A new feature in Java 5, annotations are notes in Java programs to instruct the Java
compiler to do something. You can annotate any program elements, including Java
packages, classes, constructors, fields, methods, parameters, and local variables. Java

annotations are defined in JSR 175 (http://www.jcp.org/en/jsr/detail?id=175).
Java 5 provided three standard annotations and four standard meta-annotations. Java 6
added dozens of others.

This appendix is for you if you are new to annotations. It tells you everything you need to
know about annotations and annotation types. It starts with an overview of annotations,
and then teaches you how to use the standard annotations in Java 5 and Java 6. It
concludes with a discussion of custom annotations.

An Overview of Annotations

Annotations are notes for the Java compiler. When you annotate a program element in a
source file, you add notes to the Java program elements in that source file. You can
annotate Java packages, types (classes, interfaces, enumerated types), constructors,
methods, fields, parameters, and local variables. For example, you can annotate a Java
class so that any warnings that the javac program would otherwise issue be suppressed.
Or, you can annotate a method that you want to override to get the compiler to verify that
you are really overriding the method, not overloading it. Additionally, you can annotate a
Java class with the name of the developer. In a large project, annotating every Java class
can be useful for the project manager or architect to measure the productivity of the
developers. For example, if all classes are annotated this way, it is easy to find out who is
the most or the least productive programmer.

The Java compiler can be instructed to interpret annotations and discard them (so those
annotations only live in source files) or include them in resulting Java classes. Those that
are included in Java classes may be ignored by the Java virtual machine, or they may be
loaded into the virtual machine. The latter type is called runtime-visible and you can use
reflection to inquire about them.

Annotations and Annotation Types

When studying annotations, you will come across these two terms very often: annotations
and annotation types. To understand their meanings, it is useful to first bear in mind that an
annotation type is a special interface type. An annotation is an instance of an annotation
type. Just like an interface, an annotation type has a name and members. The information
contained in an annotation takes the form of key/value pairs. There can be zero or multiple
pairs and each key has a specific type. It can be a String, int, or other Java types.
Annotation types with no key/value pairs are called marker annotation types. Those with
one key/value pair are often referred to single-value annotation types.

There are three annotation types in Java 5: Deprecated, Override, and
SuppressWarnings. They are part of the java.lang package and you will learn to use
them in the section "Built-in Annotations.” On top of that, there are four other annotation
types that are part of the java.lang.annotation package: Documented, Inherited,

Retention, and Target. These four annotation types are used to annotate annotations, and

you will learn about them in the section "Custom Annotation Types" later in this
chapter. Java 6 adds many annotations of its own.

Annotation Syntax

In your code, you use an annotation differently from using an ordinary interface. You
declare an annotation type by using this syntax.

@\nnot at i onType

or

@\nnot ati onType(el enent Val uePai rs)

The first syntax is for marker annotation types and the second for single-value and multi-
value types. It is legal to put white spaces between the at sign (@) and annotation type, but
this is not recommended.

For example, here is how you use the marker annotation type Deprecated:

@pepr ecat ed

And, this is how you use the second element for multi-value annotation type Author:

@Aut hor (firstNane="Ted", | ast Name="Di ong")

There is an exception to this rule. If an annotation type has a single key/value pair and the
name of the key is value, then you can omit the key from the bracket. Therefore, if the
fictitious annotation type Stage has a single key named value, you can write

@5t age(val ue=1)

or

@t age(1)

The Annotation Interface

Know that an annotation type is a Java interface. All annotation types are subinterfaces of
the java.lang.annotation.Annotation interface. It has one method, annotationType,
that returns an java.lang.Class object.

java.l ang. O ass<? extends Annotation> annotati onType()

In addition, any implementation of Annotation will override the equals, hashCode, and
toString methods from the java.lang.Object class. Here are their default
implementations.

public bool ean equal s(hj ect object)

Returns true if object is an instance of the same annotation type as this one and all
members of object are equal to the corresponding members of this annotation.

public int hashCode()

Returns the hash code of this annotation, which is the sum of the hash codes of its
members

public String toString()

Returns a string representation of this annotation, which typically lists all the key/value
pairs of this annotation.

You will use this class when learning custom annotation types later in this chapter.

Standard Annotations

Java 5 comes with three built-in annotations, all of which are in the java.lang package:
Override, Deprecated, and SuppressWarnings. They are discussed in this section.

Override

Override is a marker annotation type that can be applied to a method to indicate to the
compiler that the method overrides a method in a superclass. This annotation type guards
the programmer against making a mistake when overriding a method.

For example, consider this class Parent:

class Parent {
public float calculate(float a, float b) {
return a * b;
}

Suppose, you want to extend Parent and override its calculate method. Here is a subclass
of Parent:

public class Child extends Parent {
public int calculate(int a, int b) {
return (a + 1) * b;
}

The Child class compiles. However, the calculate method in Child does not override the
method in Parent because it has a different signature, namely it returns and accepts ints
instead of floats. In this example, a programming mistake like this is easy to spot because
you can see both the Parent and Child classes. However, you are not always this lucky.
Sometimes the parent class is buried somewhere in another package. This seemingly trivial
error could be fatal because when a client class calls the calculate method on an Child
object and passes two floats, the method in the Parent class will be invoked and a wrong
result will be returned.

Using the Override annotation type will prevent this kind of mistake. Whenever you want
to override a method, declare the Override annotation type before the method:

public class Child extends Parent {

@verride

public int calculate(int a, int b) {
return (a + 1) * b;

}

This time, the compiler will generate a compile error and you'll be notified that the
calculate method in Child is not overriding the method in the parent class.

It is clear that @Override is useful to make sure programmers override a method when
they intend to override it, and not overload it.

Deprecated

Deprecated is a marker annotation type that can be applied to a method or a type
(class/interface) to indicate that the method or type is deprecated. A deprecated method or
type is marked so by the programmer to warn the users of his code that they should not
use or override the method or use or extend the type. The reason why a method or a type
is marked deprecated is usually because there is a better method or type and the method or
type is retained in the current software version for backward compatibility.

For example, the DeprecatedTest class in Listing C.1 uses the Deprecated annotation
type.

Listing C.1. Deprecating a method

public class DeprecatedTest {

@epr ecat ed
public void serve() {
}

If you use or override a deprecated method, you will get a warning at compile time. For

example, Listing C.2 shows the DeprecatedTest2 class that uses the serve method in
DeprecatedTest.

Listing C.2. Using a deprecated method

public class DeprecatedTest2 {
public static void main(String[] args) {
Deprecat edTest test = new DeprecatedTest();
test.serve();

Compiling DeprecatedTest2 generates this warning:

Not e: DeprecatedTest2.java uses or overrides a deprecated API.
Not e: Reconpile with -Xlint:deprecation for details.

On top of that, you can use @Deprecated to mark a class or an interface, as shown in

Listing C.3.

Listing C.3. Marking a class deprecated

@epr ecat ed
public class DeprecatedTest3 {
public void serve() {

}

SuppressWarnings

SuppressWarnings is used, as you must have guessed, to suppress compiler warnings.
You can apply @SuppressWarnings to types, constructors, methods, fields, parameters,
and local variables.

You use it by passing a String array that contains warnings that need to be suppressed. Its
syntax is as follows.

@uppr essWar ni ngs(val ue={string-1, ..., string-n})

where string-1 to string-n indicate the set of warnings to be suppressed. Duplicate and

unrecognized warnings will be ignored.

The following are valid parameters to @SuppressWarnings:

unchecked. Give more detail for unchecked conversion warnings that are mandated
by the Java Language Specification.

path. Warn about nonexistent path (classpath, sourcepath, etc) directories.

serial. Warn about missing serialVersionUID definitions on serializable classes.
finally. Warn about finally clauses that cannot complete normally.

fallthrough. Check switch blocks for fall-through cases, namely cases, other than
the last case in the block, whose code does not include a break statement, allowing
code execution to "fall through" from that case to the next case. As an example, the

code following the case 2 label in this switch block does not contain a break
statement:

switch (i) {

case 1:
Systemout.println("1");
br eak;

case 2:
Systemout.printlin("2");
/1 falling through

case 3:
Systemout.printin("3");

}

As an example, the SuppressWarningsTest class in Listing C.4 uses the

SuppressWarnings annotation type to prevent the compiler from issuing unchecked and

fallthrough warnings.

Listing C.4. Using @SuppressWarnings

i mport java.io.File;
i mport java.io.Serializable;
i mport java.util.ArraylList;

@uppr ess\Var ni ngs(val ue={"unchecked", "serial "})
public class SuppressWarningsTest inplenents Serializable {
public void openFile() {
ArraylList a = new ArrayList();
File file = new File("X:/javal/doc.txt");

Standard Meta-Annotations

Meta annotations are annotations that are applied to annotations. There are four meta-
annotation types that come standard with Java 5 that are used to annotate annotations;
they are Documented, Inherited, Retention, and Target. All the four are part of the
java.lang.annotation package. This section discusses these annotation types.

Documented

Documented is a marker annotation type used to annotate the declaration of an
annotation type so that instances of the annotation type will be included in the
documentation generated using Javadoc or similar tools.

For example, the Override annotation type is not annotated using Documented. As a
result, if you use Javadoc to generate a class whose method is annotated @Override, you
will not see any trace of @Override in the resulting document.

For instance, Listing C.5 shows the OverrideTest2 class that uses @Override to
annotate the toString method.

Listing C.5. The OverrideTest2 class

public class OverrideTest2 {
@verride
public String toString() {
return "OverrideTest2";
}

On the other hand, the Deprecated annotation type is annotated @Documented. Recall

that the serve method in the DeprecatedTest class in Listing C.2 is annotated
@Deprecated. Now, if you use Javadoc to generate the documentation for
OverrideTest2, the details of the serve method in the documentation will also include
@Deprecated, like this:

serve

@pepr ecat ed
public void serve()

Inherited

You use Inherited to annotate an annotation type so that any instance of the annotation
type will be inherited. If you annotate a class using an inherited annotation type, the
annotation will be inherited by any subclass of the annotated class. If the user queries the
annotation type on a class declaration, and the class declaration has no annotation of this
type, then the class's parent class will automatically be queried for the annotation type. This
process will be repeated until an annotation of this type is found or the root class is
reached.

Check out the section "Custom Annotation Types" on how to query an annotation
type.

Retention

@Retention indicates how long annotations whose annotated types are annotated
@Retention are to be retained. The value of @Retention can be one of the members of the
java.lang.annotation.RetentionPolicy enum:

e SOURCE. Annotations are to be discarded by the Java compiler.

e CLASS. Annotations are to be recorded in the class file but not be retained by the
JVM. This is the default value.

e RUNTIME. Annotations are to be retained by the JVM so you can query them using
reflection.

For example, the declaration of the SuppressWarnings annotation type is annotated
@Retention with the value of SOURCE.

@=et ent i on(val ue=SOURCE)
public @nterface SuppressWarni ngs

Target

Target indicates which program element(s) can be annotated using instances of the
annotated annotation type. The value of Target is one of the members of the
java.lang.annotation.ElementType enum:

e ANNOTATION_TYPE. The annotated annotation type can be used to annotate
annotation type declaration.

¢ CONSTRUCTOR. The annotated annotation type can be used to annotate
constructor declaration.

e FIELD. The annotated annotation type can be used to annotate field declaration.

¢ LOCAL_VARIABLE. The annotated annotation type can be used to annotate local
variable declaration.

¢ METHOD. The annotated annotation type can be used to annotate method
declaration.

¢ PACKAGE. The annotated annotation type can be used to annotate package
declarations.

¢ PARAMETER. The annotated annotation type can be used to annotate parameter
declarations.

e TYPE. The annotated annotation type can be used to annotate type declarations.

As an example, the Override annotation type declaration is annotated the following Target
annotation, making Override can only be applied to method declarations.

@rar get (val ue=METHOD)

You can have multiple values in the Target annotation. For example, this is from the
declaration of SuppresswWarnings:

@ar get (val ue={ TYPE, FI ELD, METHOD, PARAMETER, CONSTRUCTOR, LOCAL_VARI ABLE})

Custom Annotation Types

An annotation type is a Java interface, except that you must add an at sign before the
interface keyword when declaring it.

public @nterface CustomAnnotation {
}

By default, all annotation types implicitly or explicitly extend the
java.lang.annotation.Annotation interface. In addition, even though you can extend an
annotation type, its subtype is not treated as an annotation type.

A Custom Annotation Type

As an example, Listing C.6 shows a custom annotation type called Author.

Listing C.6. The Author annotation type

i mport java.l ang. annot ati on. Docunent ed;
i mport java.lang.annotation. Retenti on;
i mport java.lang.annotation. Retenti onPolicy;

@ocunent ed
@ret enti on(Ret enti onPol i cy. RUNTI VE)
public @nterface Author {

String firstName();

String |astNanme();

bool ean i nt ernal Enpl oyee();

Using the Custom Annotation Type

The Author annotation type is like any other Java type. Once you import it into a class or
an interface, you can use it simply by writing

@\ut hor (firstNanme="firstNane", |astNanme="|astNane",
i nt er nal Enpl oyee=true| f al se)

For example, the Test1 class in Listing C.7 is annotated Author.

Listing C.7. A class annotated Author

@\ut hor (firstNane="John", | ast Nanme="CGuddel | ", i nt er nal Enpl oyee=tr ue)
public class Testl {
}

Is that it? Yes, that's it. Very simple, isn't it?

The next subsection "Using Reflection to Query Annotations" shows how the
Author annotations can be of good use.

Using Reflection to Query Annotations

In Java 5, the java.lang.Class has a few methods related to annotations.

public <A extends java.lang.annotation. Annotati on> A get Annot ati on
(d ass<A> annot ati onC ass)

Returns this element's annotation for the specified annotation type, if present. Otherwise,
returns null.

public java.lang. annotation. Annotation[] getAnnotations()

Returns all annotations present on this class.

publ i c bool ean i sAnnot ati on()

Returns true if this class is an annotation type.

publ i c bool ean i sAnnot ati onPresent (C ass<? extends
j ava. | ang. annot ati on. Annot ati on> annot ati onCl ass)

Indicates whether an annotation for the specified type is present on this class

The com.brainysoftware.jdk5.appl18.custom package includes three test classes,

Testl, Test2, and Test3, that are annotated Author. Listing C.8 shows a test class that
employs reflection to query the test classes.

Listing C.8. Using reflection to query annotations

public class CustonmAnnotationTest ({
public static void printdassinfo(C ass c) {
Systemout.print(c.getNane() + ". ");
Aut hor author = (Author) c.getAnnotation(Author.class);
if (author !'= null) {
Systemout. println("Author:" + author.firstNane()
+ " " + author.lastNanme());
} else {
System out . printl n("Aut hor unknown");
}
}

public static void main(String[] args) {
Cust omAnnot ati onTest . print C assl nfo(Test 1. cl ass);
Cust omAnnot ati onTest . print C assl nf o(Test 2. cl ass);
Cust omAnnot ati onTest . print C assl nf o(Test 3. cl ass);
Cust omAnnot at i onTest . pri nt G assl nf o(
Cust omAnnot at i onTest . cl ass);

When run, you will see the following message in your console:

Test1l. Author:John Guddel |

Test 2. Aut hor: John Guddel |

Test 3. Author:Lesley Nielsen

Cust omAnnot ati onTest. Aut hor unknown

	Struts 2 Design and Programming: A Tutorial
	Introduction
	Why Servlets Are Not Dead
	The Problems with Model 1
	Model 2
	Struts Overview
	Upgrading to Struts 2
	Overview of the Chapters
	Prerequisites and Software Download
	Sample Applications

	Chapter 1. Model 2 Applications
	Model 2 Overview
	Figure 1.1. Model 2 architecture

	Model 2 with A Servlet Controller
	Figure 1.2. The Product form
	Figure 1.3. The product details page
	Figure 1.4. app01a directory structure
	The Product Action Class
	Listing 1.1. The Product class

	The ControllerServlet Class
	Listing 1.2. The ControllerServlet Class

	The Views
	Listing 1.3. The ProductForm.jsp page
	Listing 1.4. The displaySavedProduct.jsp page

	The Deployment Descriptor
	Listing 1.5. The deployment descriptor (web.xml) for app01a

	Using the Application

	Model 2 with A Filter Dispatcher
	Figure 1.5. app01b directory structure
	Listing 1.6. The FilterDispatcher class
	Listing 1.7. The deployment descriptor for app01b

	Summary

	Chapter 2. Starting with Struts
	The Benefits of Struts
	How Struts Works
	Figure 2.1. How Struts works

	Interceptors
	Struts Configuration Files
	The struts.xml File
	The package Element
	The include Element
	The action Element
	The result Element
	The global-results Element
	The Interceptor-related Elements
	The param Element
	The constant Element

	The struts.properties File

	A Simple Struts Application
	Figure 2.2. app02a directory structure
	The Deployment Descriptor and the Struts Configuration File
	Listing 2.1. The deployment descriptor (web.xml file)
	Listing 2.2. The struts.xml

	The Action Class
	Listing 2.3. The Product action class

	Running the Application

	Dependency Injection
	Overview
	Forms of Dependency Injection

	Summary

	Chapter 3. Actions and Results
	Action Classes
	Listing 3.1. The Employee action class

	Accessing Resources
	The ServletActionContext Object
	Listing 3.2. Accessing resources through ServletActionContext

	Aware Interfaces
	ServletContextAware
	ServletRequestAware
	ServletResponseAware
	SessionAware

	Using Aware Interfaces to Access Resources
	Listing 3.3. Action Declarations in app03a
	Listing 3.4. The User class
	Figure 3.1. The Login form
	Figure 3.2. Displaying the number of users currently logged in

	Passing Static Parameters to An Action
	The ActionSupport Class
	Results
	Chain
	Dispatcher
	FreeMarker
	HttpHeader
	Redirect
	Redirect Action
	Stream
	Velocity
	XSLT
	PlainText

	Exception Handling with Exception Mapping
	Wildcard Mapping
	Dynamic Method Invocation
	Testing Action Classes
	Summary

	Chapter 4. OGNL
	The Value Stack
	Figure 4.1. The Value Stack

	Reading Object Stack Object Properties
	Reading Context Map Object Properties
	Invoking Fields and Methods
	Listing 4.1. The now static method

	Working with Arrays
	Listing 4.3. The getColors method

	Working with Lists
	Listing 4.4. The getCountries method

	Working with Maps
	Listing 4.5. The getCities method

	JSP EL: When OGNL Can't Help
	Summary

	Chapter 5. Form Tags
	Using Struts Tags
	Common Attributes
	The form Tag
	The textfield, password, hidden Tags
	Listing 5.1. The TextFieldTestAction class
	Listing 5.2. The TextField.jsp page
	Figure 5.1. Using textfield, password, and hidden

	The submit Tag
	The reset Tag
	The label Tag
	The head Tag
	The textarea Tag
	Listing 5.3. The TextAreaTestAction class
	Listing 5.4. The TextArea.jsp page
	Figure 5.2. Using textarea

	The checkbox Tag
	Listing 5.5. The CheckBoxTestAction class
	Listing 5.6. The CheckBox.jsp page
	Figure 5.3. Using check boxes
	Listing 5.7. The CheckBoxTest2Action class
	Listing 5.8. The CheckBox2.jsp page
	Figure 5.4. Using the fieldValue attribute

	The list, listKey, and listValue attributes
	Figure 5.5. Radio buttons
	Figure 5.6. The city select element
	Assigning A String
	Assigning a Map
	Assigning A Collection or An Object Array

	The radio Tag
	Listing 5.9. The RadioTestAction class
	Listing 5.10. The Radio.jsp page
	Figure 5.7. Using the radio tag

	The select Tag
	Listing 5.11. The application listener
	Listing 5.12. The SelectTestAction and City classes
	Listing 5.13. The Select.jsp page
	Figure 5.8. The city options for US
	Figure 5.9. The city options for Canada

	Select Option Grouping with optgroup
	Listing 5.14. The OptGroupTestAction class
	Listing 5.15. The OptGroup.jsp page
	Figure 5.10. Using optgroup

	The checkboxlist Tag
	Listing 5.16. The CheckBoxListTestAction and Interest classes
	Listing 5.17. The CheckBoxList.jsp page
	Figure 5.11. Using checkboxlist

	The combobox Tag
	Listing 5.18. The ComboBoxTestAction class
	Listing 5.19. The ComboBox.jsp page
	Figure 5.12. Using combobox

	The updownselect Tag
	Figure 5.13. Using updownselect
	Listing 5.20. The UpDownSelectTestAction class
	Listing 5.21. The UpDownSelect.jsp page

	The optiontransferselect Tag
	Listing 5.22. The OptionTransferSelectTestAction
	Listing 5.23. The OptionTransferSelect.jsp page
	Figure 5.14. Using optiontransferselect

	The doubleselect Tag
	Listing 5.24. The DoubleSelectTestAction class
	Listing 5.25. The DoubleSelect.jsp page
	Figure 5.15. Using doubleselect

	Themes
	Summary

	Chapter 6. Generic Tags
	The property Tag
	Listing 6.1. The PropertyTestAction class
	Listing 6.2. The Property.jsp page
	Figure 6.1. Using the property tag

	The a Tag
	The action Tag
	The param Tag
	The bean Tag
	Listing 6.3. The DegreeConverter class
	Listing 6.4. The Bean.jsp page
	Figure 6.2. Using the bean tag

	The date Tag
	Listing 6.5. The Date.jsp page
	Figure 6.3. Using the date tag

	The include Tag
	The set Tag
	Listing 6.6. The SetTestAction class
	Listing 6.7. The Set.jsp page
	Figure 6.4. Using the set tag

	The push Tag
	Listing 6.8. The PushTestAction class
	Listing 6.9. The Push.jsp page
	Figure 6.5. Using the push tag

	The url Tag
	The if, else, and elseIf Tags
	Listing 6.10. The IfTestAction class
	Listing 6.11. The If.jsp page
	Figure 6.6. Using the if, elseif, and else tags

	The iterator Tag
	Listing 6.12. The IteratorTestAction class
	Listing 6.13. The Iterator.jsp page
	Figure 6.7. Using the iterator tag

	The append Tag
	Listing 6.14. Using append

	The merge Tag
	Listing 6.15. The MergeTestAction class
	Listing 6.16. The Merge.jsp page
	Figure 6.8. Using the merge tag

	The generator Tag
	Listing 6.17. The Generator.jsp page
	Figure 6.9. Using the generator tag
	Listing 6.18. The GeneratorConverterTestAction class
	Listing 6.19. The GeneratorConverter.jsp page
	Figure 6.10. The generator converter example

	The sort Tag
	Listing 6.20. The SortTestAction class
	Listing 6.21. The Sort.jsp page
	Figure 6.11. Using the sort tag

	The subset Tag
	Listing 6.22. The SubsetTestAction class
	Listing 6.23. The Subset.jsp page
	Figure 6.12. Using the subset tag

	Summary

	Chapter 7. Type Conversion
	Type Conversion Overview
	Customizing Conversion Error Messages
	Figure 7.1. app07a directory structure
	Listing 7.1. The Transaction action class
	Listing 7.2. The Transaction.jsp page
	Listing 7.3. The Receipt.jsp page
	Listing 7.4. The Transaction.properties file
	Figure 7.2. The Transaction.jsp page
	Figure 7.3. Failed type conversions

	Custom Type Converters
	Figure 7.4. TypeConverter and its implementation classes
	Listing 7.5. The DefaultTypeConverter class
	Configuring Custom Converters
	Custom Converter Examples
	Figure 7.5. app07b directory structure
	Listing 7.6. The MyCurrencyConverter class
	Listing 7.7. The MyDateConverter class
	Listing 7.8. The Transaction-conversion.properties file

	Extending StrutsTypeConverter
	Listing 7.9. The StrutsTypeConverter class
	Listing 7.10. The Color class
	Figure 7.6. app07c directory structure
	Listing 7.11. The action declaration
	Listing 7.12. The Design class
	Listing 7.13. The MyColorConverter class
	Listing 7.14. The xwork-conversion.properties file
	Figure 7.7. Using a color converter
	Figure 7.8. Displaying a color

	Working with Complex Objects
	Figure 7.9. app07d directory structure
	Listing 7.15. The action declaration
	Listing 7.16. The Admin class
	Listing 7.17. The Employee class
	Listing 7.18. The Admin.jsp page
	Listing 7.19. The Confirmation.jsp page
	Listing 7.20. The Admin-conversion.properties file

	Working with Collections
	Figure 7.10. app07e directory structure
	Listing 7.21. The action declaration
	Listing 7.22. The Admin class
	Listing 7.23. The Employee class
	Listing 7.24. The Admin.jsp page
	Listing 7.25. The Confirmation.jsp page
	Figure 7.11. Adding multiple employees at the same time
	Figure 7.12. Displaying added employees

	Working with Maps
	Figure 7.13. app07f directory structure
	Listing 7.26. The action declaration
	Listing 7.27. The Admin class
	Listing 7.28. The Employee class
	Listing 7.29. The Admin-conversion.properties file
	Listing 7.30. The Employee-conversion.properties file
	Listing 7.31. The Admin.jsp page
	Listing 7.32. The Confirmation.jsp page
	Figure 7.14. Populating a Map
	Figure 7.15. Displaying a Map's elements

	Summary

	Chapter 8. Input Validation
	Validator Overview
	Validator Configuration
	Bundled Validators
	required Validator
	Listing 8.1. The RequiredTestAction class
	Listing 8.2. The RequiredTestAction-validation.xml file
	Listing 8.3. The Required.jsp page
	Figure 8.1. The required validator

	requiredstring validator
	Listing 8.4. The RequiredStringTestAction class
	Listing 8.5. The RequiredStringTestAction-validation.xml file
	Listing 8.6. The RequiredString.jsp page
	Figure 8.2. Using requiredstring

	stringlength Validator
	Listing 8.7. The StringLengthTestAction class
	Listing 8.8. The StringLengthTestAction-validation.xml file
	Listing 8.9. The StringLength.jsp page
	Figure 8.3. Using stringlength

	int Validator
	Listing 8.10. The IntTestAction class
	Listing 8.11. The IntTestAction-validation.xml file
	Listing 8.12. The Int.jsp page
	Figure 8.4. Using the int validator

	date Validator
	Listing 8.13. The DateTestAction class
	Listing 8.14. The DateTestAction-validation.xml file
	Listing 8.15. The Date.jsp page
	Figure 8.5. Using the date validator

	email Validator
	Listing 8.16. The EmailTestAction class
	Listing 8.17. The EmailTestAction-validation.xml file
	Listing 8.18. The Email.jsp page
	Figure 8.6. Using the email validator

	url Validator
	Listing 8.19. The UrlTestAction class
	Listing 8.20. The UrlTestAction-validation.xml file
	Listing 8.21. The Url.jsp page
	Figure 8.7. Using the url validator

	regex Validator
	expression and fieldexpression Validators
	The expression Validator Example
	Listing 8.22. The ExpressionTestAction class
	Listing 8.23. The ExpressionTestAction-validation.xml file
	Listing 8.24. The Expression.jsp page
	Figure 8.8. Using expression
	The fieldexpression Validator Example
	Listing 8.25. The FieldExpressionTestAction class
	Listing 8.26. The FieldExpressionTestAction-validation.xml file
	Listing 8.27. The FieldExpression.jsp page
	Figure 8.9. Using fieldvalidator

	conversion Validator
	Listing 8.28. The ConversionTestAction class
	Listing 8.29. The ConversionTestAction-validation.xml file
	Listing 8.30. The Conversion.jsp page
	Figure 8.10. The conversion validator in action

	visitor Validator
	Validating a Complext Object (app08b)
	Figure 8.11. app08b directory structure
	Listing 8.31. The Customer class
	Listing 8.32. The Address class
	Listing 8.33. The Customer-validation.xml
	Listing 8.34. The Customer.jsp page
	Figure 8.12. Validations for a complex object
	Using the visitor Validator (app08c)
	Figure 8.13. app08c directory structure
	Listing 8.35. The Address-validation.xml file
	Listing 8.36. The Customer-validation.xml file
	Using the visitor Validator in different contexts (app08d)
	Figure 8.14. app08d directory structure
	Listing 8.37. The Address-specific-validation.xml file
	Listing 8.38. The Employee-validation.xml file

	Writing Custom Validators
	Figure 8.15. The Validator interface and supporting types
	Listing 8.39. The Validator interface
	Listing 8.40. The RequiredStringValidator class
	Registration
	Listing 8.41. The default.xml file

	Example
	Figure 8.16. app08e directory structure
	Listing 8.42. The StrongPasswordValidator class
	Listing 8.43. The validators.xml file
	Listing 8.44. The User class
	Listing 8.45. The User-validation.xml file
	Listing 8.46. The User.jsp page
	Figure 8.17. The strongpassword validator in action

	Programmatic Validation Using Validateable
	Listing 8.47. The User class
	Listing 8.48. The User-validation.xml file
	Figure 8.18. Programmatic validation

	Summary

	Chapter 9. Message Handling and Internationalization
	Locales and Java Resource Bundles
	Internationalization Support in Struts
	Figure 9.1. app09a directory structure
	Listing 9.1. The Customer action class
	Listing 9.2. The Customer.jsp page

	The text Tag
	Figure 9.2. app09b directory structure
	Listing 9.3. The Main_en.properties file
	Listing 9.4. The Main_de.properties file
	Listing 9.5. The Main_zh.properties file
	Listing 9.6. The Main class
	Listing 9.7. The Main.jsp page
	Figure 9.3. The German locale

	The i18n Tag
	Listing 9.8. The MyCustomResourceBundle class
	Listing 9.9. The MyCustomResourceBundle_de class
	Listing 9.10. The Main.jsp page

	Manually Selecting A Resource Bundle
	Listing 9.11. The action declarations
	Listing 9.12. The Language.jsp page
	Listing 9.13. The Main1.jsp page
	Listing 9.14. The Main2.jsp page
	Figure 9.4. Letting the user select a language

	Summary

	Chapter 10. Model Driven and Prepare Interceptors
	Separating the Action and the Model
	The Model Driven Interceptor
	Listing 10.1. The ModelDriven interface
	Listing 10.2. A ModelDriven action
	Listing 10.3. The Product class
	Listing 10.4. The struts.xml file
	Listing 10.5. The EmployeeAction class
	Listing 10.6. The Employee model class
	Listing 10.7. The EmployeeManager class
	Figure 10.1. Using the Model Driven interceptor
	Listing 10.8. The EmployeeAction-Employee_create-validation.xml file

	The Preparable Interceptor
	Listing 10.9. The Preparable interface
	Listing 10.10. The action declarations in app10b
	Listing 10.11. The EmployeeAction class
	Listing 10.12. The EmployeeManager class
	Figure 10.2. Using the Prepare interceptor

	Summary

	Chapter 11. The Persistence Layer
	Figure 11.1. The persistence layer
	The Data Access Object Pattern
	The Simplest Implementation of the DAO Pattern
	Figure 11.2. The simplest implementation of the DAO pattern

	The DAO Pattern with A DAO Interface
	Figure 11.3. DAO pattern with a DAO interface

	The DAO Pattern with the Abstract Factory Pattern
	Figure 11.4. DAO pattern with Abstract Factory pattern

	Implementing the DAO Pattern
	The DAO Interface and the DAOBase Class
	Listing 11.1. The DAO interface
	Listing 11.2. The DAOBase Class
	Listing 11.3. The AppListener class
	Listing 11.4. The DAOException Class

	The EmployeeDAO Interface
	Listing 11.5. The EmployeeDAO interface

	The EmployeeDAOMySQLImpl Class
	Listing 11.6. The EmployeeDAOMySQLImpl Interface
	Listing 11.7. The fixSqlFieldValue method

	The DAOFactory Class
	Listing 11.8. The DAOFactory Class

	The EmployeeManager Class
	Listing 11.9. The EmployeeManager class

	Running the Application
	Figure 11.5. The Employee form

	Hibernate
	Summary

	Chapter 12. File Upload
	File Upload Overview
	Figure 12.1. Rendered visual elements of <input type=file>

	File Upload in Struts
	The File Upload Interceptor
	Single File Upload Example
	Figure 12.2. app12a directory structure
	Listing 12.1. The struts.xml file
	Listing 12.2. The SingleUpload.jsp page
	Listing 12.3. The SingleFileUploadAction class
	Listing 12.4. The struts-messages.properties file
	Figure 12.3. Single file upload

	Multiple File Upload Example
	Listing 12.5. The action declarations
	Listing 12.6. The MultipleUpload.jsp page
	Listing 12.7. The MultipleFileUploadAction class
	Figure 12.4. Multiple file upload
	Listing 12.8. Using Lists

	Summary

	Chapter 13. File Download
	File Download Overview
	The Stream Result Type
	Listing 13.1. The action declarations
	Listing 13.2. The FileDownloadAction class
	Listing 13.3. The Menu.jsp file
	Figure 13.1. Downloading files

	Programmatic File Download
	Listing 13.4. Action declarations
	Listing 13.5. The Product class
	Listing 13.6. The DisplayProductsAction class
	Listing 13.7. The Product.jsp page
	Listing 13.8. The GetImageAction class
	Figure 13.2. The images sent from the GetImageAction object.

	Summary

	Chapter 14. Securing Struts Applications
	Principals and Roles
	Writing Security Policies
	Protecting Resources
	Specifying the Login Method

	Authentication Methods
	Figure 14.1. The standard Login dialog box in Internet Explorer
	Using Basic Authentication
	Listing 14.1. Action declarations
	Listing 14.2. The deployment descriptor (web.xml file)
	Figure 14.2. Tomcat default error page
	Figure 14.3. Custom error page

	Using Form-Based Authentication
	Listing 14.3. The web.xml file for app14b
	Listing 14.4. The login page in app14b
	Figure 14.4. The Login page

	Hiding Resources
	Struts Security Configuration
	Listing 14.5. The deployment descriptor
	Listing 14.6. Action declarations

	Programmatic Security
	The getAuthType Method
	The isUserInRole Method
	The getUserPrincipal Method
	The getRemoteUser Method

	Summary

	Chapter 15. Preventing Double Submits
	Managing Tokens
	Using the Token Interceptor
	Figure 15.1. app15a directory structure
	Listing 15.1. The action declarations
	Listing 15.2. The Payment action class
	Listing 15.3. The TokenInterceptor.properties file
	Listing 15.4. The Payment.jsp page
	Listing 15.5. The Error.jsp page
	Listing 15.6. The Thanks.jsp page
	Figure 15.2. The Payment form

	Using the Token Session Interceptor
	Figure 15.3. app15b directory structure
	Listing 15.7. The action declarations of app15b

	Summary

	Chapter 16. Debugging and Profiling
	The debug Tag
	Listing 16.1. The Debug.jsp page
	Figure 16.1. The Debug tag
	Figure 16.2. Useful information for debugging

	The Debugging Interceptor
	Figure 16.3. The OGNL console

	Profiling
	Summary

	Chapter 17. Progress Meters
	The Execute and Wait Interceptor
	Using the Execute and Wait Interceptor
	Listing 17.1. The HeavyDuty action class
	Listing 17.2. The action declaration for the first example
	Figure 17.1. The standard wait page

	Using A Custom Wait Page
	Listing 17.3. The action declaration for the second example
	Listing 17.4. The Wait.jsp page
	Figure 17.2. A custom wait page

	Summary

	Chapter 18. Custom Interceptors
	The Interceptor Interface
	Listing 18.1. The Interceptor interface
	Listing 18.2. The AbstractInterceptor class

	Writing A Custom Interceptor
	Listing 18.3. The DataSourceInjectorInterceptor class
	Listing 18.4. The DataSourceAware interface

	Using DataSourceInjectorInterceptor
	Listing 18.5. The action declarations
	Listing 18.6. The ListProductAction class
	Listing 18.7. The Product class
	Listing 18.8. The ProductDAO class
	Figure 18.1. Using DataSourceInjectorInterceptor

	Summary

	Chapter 19. Custom Result Types
	Overview
	Writing A Custom Plugin
	Figure 19.1. The CAPTCHA-facilitated login page
	Listing 19.1. The CaptchaResult class

	Using the New Result Type
	Listing 19.2. Action declarations
	Listing 19.3. The Login class
	Listing 19.4. The Login.jsp page
	Listing 19.5. The Thanks.jsp page

	Summary

	Chapter 20. Velocity
	Overview
	Velocity Implicit Objects
	Tags
	Velocity Example
	Listing 20.1. Action declarations
	Listing 20.2. The Product.vm template
	Listing 20.3. The Product class
	Listing 20.4. The Details.vm template
	Figure 20.1. The form in the Product.vm template
	Figure 20.1. The content of the Details.vm template

	Summary

	Chapter 21. FreeMarker
	Overview
	FreeMarker Tags
	Example
	Listing 21.1. Action declarations
	Listing 21.2. The Product class
	Listing 21.3. The Product.ftl template
	Listing 21.4. The Details.ftl template
	Figure 21.1. The Product form
	Figure 21.2. The Details page

	Summary

	Chapter 22. XSLT Results
	Overview
	Figure 22.1. How XSLT works

	The XSLT Result Type
	Listing 22.1. The Product action class
	Listing 22.2. The Supplier class

	Example
	Listing 22.3. The action declaration
	Listing 22.4. The Product.xsl template

	Summary

	Chapter 23. Plug-ins
	Overview
	The Plug-in Registry
	Writing A Custom Plugin
	Listing 23.1. The struts-plugin.xml file
	Figure 23.1. The directory structure of the captcha plugin

	Using the Captcha Plug-in
	Listing 23.2. Action declarations
	Listing 23.3. The Login class
	Listing 23.4. The Login.jsp page
	Listing 23.5. The Thanks.jsp page
	Figure 23.2. The CAPTCHA-facilitated login page

	Summary

	Chapter 24. The Tiles Plug-in
	The Problem with JSP Includes
	Figure 24.1. A typical layout of a web page

	Tiles Layout and Definition
	The Layout Page
	Listing 24.1. The MyLayout.jsp Tiles layout JSP

	Tiles Definitions
	Figure 24.2. Comparing Java inheritance and Tiles' layout and definition

	Struts Tiles Plugin
	Struts Tiles Example
	Figure 24.3. app24a directory structure
	Listing 24.2. Action declarations
	Listing 24.3. The tiles.xml file
	Listing 24.4. The MyLayout.jsp page
	Listing 24.5. The Product.jsp page
	Listing 24.6. The Thanks.jsp page
	Listing 24.7. The Header.jsp page
	Listing 24.8. The Footer.jsp page
	Figure 24.4. Tiles in action
	Figure 24.5. The Thank You page

	Summary

	Chapter 25. JFreeChart Plug-ins
	The JFreeChart API
	The JFreeChart Class
	Plot

	Using the Standard Plugin
	Listing 25.1. The action declarations
	Listing 25.2. The GetChartAction class
	Listing 25.3. The Main.jsp page
	Figure 25.1. JFreeChart at work

	Using the BrainySoftware JFreeChart Plugin
	Listing 25.4. Action declarations for app25b
	Listing 25.5. The GetBrainyChartAction class
	Figure 25.2. Using BrainySoftware JFreeChart plug-in

	Summary

	Chapter 26. Zero Configuration
	Conventions
	Annotations
	@Result
	Listing 26.1. The Customer action class

	@Results
	Listing 26.2. The Supplier action class

	@Namespace
	Listing 26.3. The EditCustomer action class

	@ParentPackage

	The CodeBehind Plug-in
	Listing 26.4. The filter declaration
	Listing 26.5. The Login action class
	Listing 26.6. The login-input.jsp page
	Listing 26.7. The login-success.jsp page
	Figure 26.1. The login-input.jsp page

	Summary

	Chapter 27. AJAX
	AJAX Overview
	Dojo's Event System
	Using the Struts Dojo Plug-in
	The head Tag
	The div Tag
	Example 1
	Listing 27.1. The Div1.jsp page

	Example 2
	Listing 27.2. The Div2.jsp page

	Example 3
	Listing 27.3. The Div3.jsp page

	The a Tag
	Listing 27.4. The A.jsp page

	The submit Tag
	The bind Tag
	The datetimepicker Tag
	Figure 27.1. A date picker and a time picker
	Figure 27.2. Different values of adjustWeeks

	The tabbedpanel Tag
	Figure 27.3. A tabbed panel

	The textarea Tag
	Figure 27.4. The textarea tag

	The autocompleter Tag
	Listing 27.5. The AutoCompleterSupport class
	Example 1
	Listing 27.6. The AutoCompleter1.jsp page
	Figure 27.5. The car make list

	Example 2
	Listing 27.7. The AutoCompleter2.jsp page
	Listing 27.8. CarMakesAsJSON1.jsp page

	Example 3
	Listing 27.9. The AutoCompleter3.jsp page
	Listing 27.10. CarMakesAsJSON2.jsp page

	The tree and treenode Tags
	Example 1
	Listing 27.11. The Tree1.jsp page
	Figure 27.6. A static tree

	Example 2
	Listing 27.12. TreeSupport action class
	Listing 27.13. The Node class
	Listing 27.14. The Tree2.jsp page
	Figure 27.7. A dynamic tree

	Summary

	Appendix A. Struts Configuration
	The struts.xml File
	The action Element
	The bean Element
	The constant Element
	The default-action-ref Element
	The default-interceptor-ref Element
	The exception-mapping Element
	The global-exception-mappings Element
	The global-results Element
	The include Element
	The interceptor Element
	The interceptor-ref Element
	The interceptor-stack Element
	The interceptors Element
	The package Element
	The param Element
	The result Element
	The result-type Element
	The result-types Element
	The struts-default.xml File
	Listing A.1. The struts-default.xml file

	The struts.properties File

	Appendix B. The JSP Expression Language
	The Expression Language Syntax
	Reserved Words
	The [] and . Operators
	The Evaluation Rule

	Accessing JavaBeans
	EL Implicit Objects
	pageContext
	initParam
	param
	paramValues
	header
	headerValues
	cookie
	applicationScope, sessionScope, requestScope, and pageScope

	Using Other EL Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	The Conditional Operator
	The empty Operator

	Configuring the EL in JSP 2.0 and Later Versions
	Achieving Script-Free JSPs
	Deactivating the EL Evaluation

	Summary

	Appendix C. Annotations
	An Overview of Annotations
	Annotations and Annotation Types
	Annotation Syntax
	The Annotation Interface

	Standard Annotations
	Override
	Deprecated
	Listing C.1. Deprecating a method
	Listing C.2. Using a deprecated method
	Listing C.3. Marking a class deprecated

	SuppressWarnings
	Listing C.4. Using @SuppressWarnings

	Standard Meta-Annotations
	Documented
	Listing C.5. The OverrideTest2 class

	Inherited
	Retention
	Target

	Custom Annotation Types
	A Custom Annotation Type
	Listing C.6. The Author annotation type

	Using the Custom Annotation Type
	Listing C.7. A class annotated Author
	Using Reflection to Query Annotations
	Listing C.8. Using reflection to query annotations

